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An Obstructive Sleep Apnea Detection Approach
Using a Discriminative Hidden Markov Model

From ECG Signals
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Abstract—Obstructive sleep apnea (OSA) syndrome is a com-
mon sleep disorder suffered by an increasing number of people
worldwide. As an alternative to polysomnography (PSG) for OSA
diagnosis, the automatic OSA detection methods used in the cur-
rent practice mainly concentrate on feature extraction and classi-
fier selection based on collected physiological signals. However, one
common limitation in these methods is that the temporal depen-
dence of signals are usually ignored, which may result in critical
information loss for OSA diagnosis. In this study, we propose a
novel OSA detection approach based on ECG signals by consider-
ing temporal dependence within segmented signals. A discrimina-
tive hidden Markov model (HMM) and corresponding parameter
estimation algorithms are provided. In addition, subject-specific
transition probabilities within the model are employed to charac-
terize the subject-to-subject differences of potential OSA patients.
To validate our approach, 70 recordings obtained from the Phy-
sionet Apnea-ECG database were used. Accuracies of 97.1% for
per-recording classification and 86.2% for per-segment OSA de-
tection with satisfactory sensitivity and specificity were achieved.
Compared with other existing methods that simply ignore the tem-
poral dependence of signals, the proposed HMM-based detection
approach delivers more satisfactory detection performance and
could be extended to other disease diagnosis applications.

Index Terms—Electrocardiogram (ECG), hidden Markov model
(HMM), obstructive sleep apnea (OSA), temporal dependence.

I. INTRODUCTION

OBSTRUCTIVE sleep apnea (OSA) syndrome is a chronic
disease that clinically features abnormal reductions (hy-

popnea) or cessations (apnea) in airflow in breathing during
sleep. Symptoms of OSA include daytime somnolence, slow re-
action, and heavy snoring, among others. Approximately 14%
of men and 5% of woman in the US suffer from OSA syndrome,
and the disease shows an increasing incidence in various popu-
lations worldwide [1]. In clinical practice, the severity of OSA is
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usually measured by the number of apnea and hypopnea events
per hour during sleep; this parameter is known as the apnea-
hypopnea index (AHI). A subject with an AHI above 5 combined
with other clinical symptoms such as excess daytime sleepiness
and impaired cognition, is typically diagnosed as an OSA patient
[2]. AHI is generally calculated through overnight polysomnog-
raphy (PSG) collected from suspected OSA patients.

Currently, PSG is the most widely used diagnostic tool for the
OSA; it requires subjects to sleep in a laboratory for one or two
nights and records approximately 16 major physiological sig-
nals including electrocardiogram (ECG), electroencephalogram
(EEG), respiratory effort, airflow signal, and oxygen saturation
(SaO2) [3]. However, OSA diagnosis through PSG often results
in an uncomfortable experience because several wires and elec-
trodes must be attached to suspected OSA patients during signal
recording. This procedure may influence the accuracy of the
PSG diagnosis with nonnegligible measurement noises, and the
result is sensitive to the complex testing procedure. Moreover,
PSG also requires a dedicated laboratory, special equipment and
an attending nurse, and thus, considerable capital investment for
equipment, bed space, and specialized technical support must
be available. As a result, these disadvantages impede the wider
implementation of PSG for general use in public health appli-
cations.

Adancements in wearable sensors have prompted the devel-
opment of remote monitoring and diagnosis techniques and en-
couraged researchers to study a reduced set of physiological
signals instead of analyzing all available PSG channels. These
signals including ECG [4], [5], SaO2 [6], [7], snoring signal
[8], [9], midsagittal jaw movement [10], respiratory sound [11],
thoracic effort [12], and EEG signals [13] or a combination of
these [14], have been found in the literature. Among them, ECG
signal is a particularly interesting signal type to study because
it allows physiological demonstration of OSA occurence and
is convenient for recording with wearable devices. Specifically,
when an apnea event occurs, the blood oxygen levels decrease
and the cardiovascular system is prompted to maintain adequate
oxygen supply to the body. Thus, the observation of abnormal
heart activities or high heart rate variability may provide ev-
idence of OSA occurrence. In this study, we propose a new
method for OSA detection with ECG signals based on hidden
Markov models (HMM).

The rest of this paper is organized as follows. Section II re-
views the related studies of OSA detection with ECG signals. In
Section III, we describe our motivation and summarize the pro-
posed approach. Section IV gives a brief summary of our dataset,
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and Section V provides a detailed description of the proposed
approach. Results and performance measures are demonstrated
in Section VI. In Section VII, a discussion of the results is
presented. The concluding remarks are drawn in Section VIII.

II. RELATED WORKS

Most of the OSA detection methods practiced today focus
on extracting the time domain, frequency domain, and other
nonlinear features from various ECG-based signals and then
constructing classifiers with these features to determine OSA
occurrence. Studying the complete ECG of a subject during
his/her sleep is a popular research topic. For example, Khan-
doker et al., adopted a support vector machine (SVM) for OSA
patient identification based on various features extracted from
RR invervals (R wave to R wave intervals obtained from ECGs)
and ECG-derived resporatory (EDR) signals by wavelet decom-
position; in their work, over 90% of the subjects in the testing
set were correctly classified [15]. Unfortunately, these methods
are unable to provide detailed insights, such as the time of oc-
currence of apnea events and the disease severity of suspected
patients, to supplement and facilitate the accurate diagnosis of
OSA by physicians.

To address this issue, several alternative classification meth-
ods that extract features from each equal-length segment of
ECG signals have been developed for the OSA diagnosis. These
methods are capable of determining the occurrence of OSA in
each segment as well as the general OSA severity of a patient.
For example, Shouldice et al., proposed a classification method
by integrating minute-by-minute segmented ECG signals into
quadratic discriminant analysis (QDA) to detect OSA in pedi-
atric subjects, thereby achieving an accuracies of 72.1% on a
per-segment basis and 84% on a per-subject basis [16]. Medez
et al., studied over 70 features from each segment, and distin-
guished apnea segments from normal segments with a classi-
fication accuracy of 88% by the k -nearest neighbor (KNN)
and neural networks [17]. Bsoul et al., developed a real-time
apnea monitoring system based on smart phones; 63 features
from RR intervals and 48 from EDR signals were extracted
minute by minute and SVMs were employed for apnea detection
[18].

Two common problems in a number of the OSA detection
studies lie in the high-dimension feature space and the black-
box decision making process. In the literature, various feature
selection methods including statistical evaluation [18], wrapper
methods [17], and principle component analysis [19], have been
applied to reduce the dimension of the feature space. For the de-
cision making process, Sannino et al., proposed a method to
extract explicit IF . . . THEN rules and detect OSA by compar-
ing the value of extracted features with predetermined parame-
ters, thus, resulting in clear explanation of the detection result
[20].

While the segment-based classifiers described above perform
effectively by considering each segment separately, none of
them explicitly considered the intrinsic relevance between ECG
segments; however, temporal dependence does exist among seg-
ments in real cases, as will be demonstrated in the next section.

Fig. 1. Example of apnea events patterns determined by PSG from two OSA
patients with a similar severity.

III. PROPOSED APPROACH

In real ECG recordings, temporal dependence among seg-
ments is frequently observed. Fig. 1 shows two pieces of ECG
signals of 60 min from real recordings; here, each minute of the
ECG signal is labeled as either normal or apnea by physicians
and the apnea minutes have been marked by red rectangles. As
illustrated in Fig. 1, apnea segments are noticeably more likely
to be concatenated over time rather than randomly dispersed,
which reflects a high dependency in the time series of segment
states (normal/apnea). Furthermore, the patterns revealed by the
segments significantly vary between the subjects. For example,
the apnea events of Subject 1 in Fig. 1 tend to be more dispersive
than those of Subject 2. This finding indicates that not only the
state of normal or apnea is highly temporally dependent, but also
the state transition patterns differ from one subject to another.
Although these results are frequently observed in annotated data
sequences, to the best of our knowledge, few studies have yet ad-
dressed this issue. As such, developing a systematic approach to
capture the temporal dependence of segmented signal sequence
as well as the differences among individual subjects is necessary
to achieve more accurate OSA detection with ECG signals.

This paper proposes a novel OSA detection method based on
Markov chains that considers the temporal dependence of seg-
mented signals. In this approach, we treat the features obtained
from each ECG segment as an observation, and the condition
(normal or apnea) of the segment that is not directly observed
as a Markov state; thus, a HMM could be established. An im-
portant assumption in this method is that while the features
obtained from ECGs depend only on the state of the segment,
which is consistent with most of the segment-based classifiers
mentioned above, the transition probabilities between states are
subject-specific in order to characterize the subject-to-subject
differences (i.e., different subjects may have different transition
patterns as shown in Fig. 1). Thus, our proposed method con-
structs a specific model for each ECG recording and is able
to capture the individual differences among potential OSA pa-
tients. Conventional methods for parameter estimation and state
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Fig. 2. Scheme of the proposed OSA screening approach.

prediction of HMM s require that both the transition probabili-
ties and the features are subject-specific, and these features must
conform to certain distributions in order to obtain analytical so-
lutions. On the contrary, in our study, the features extracted
from ECGs are considered subject-independent and may orig-
inate from a variety of distributions. To address this problem,
a new learning and prediction procedure is further proposed
based on a discriminative HMM. The scheme of our proposed
method is demonstrated in Fig. 2. First, RR intervals and EDR
signals are obtained from ECGs; these data are used to ex-
tract features and establish the feature pool for OSA detection.
The best feature subset and the observation-to-state classifier
are then provided simultaneously by training the discriminative
HMM. In the detection procedure, the Baum–Welch algorithm
is used to estimate the state of each segment. The proposed
method is evaluated by comparing with the results of existing
approaches.

IV. DATA DESCRIPTION

The data in this study were taken from the Physionet Apnea-
ECG database [21], [22]. A total of 70 nighttime recordings of
single continuous ECG signals running for approximately 8 h
were acquired for analysis. These ECG signals were obtained
from complete PSG recordings with a sampling rate of 100 Hz,
16-bit resolution, and modified lead V2 electrode configuration.
The recordings were segmented on a minute-by-minute basis,
and each segment was labeled as either normal or apnea by
physicians.

These recordings were originated from a variety of sub-
jects. Ages of the subjects range from 27 to 63 (mean ± stan-
dard deviation: 43.8 ± 11.1 years); weights from 53 to 135 kg
(mean ± standard deviation: 86.3 ± 22.4 kg); and heights from
158 to 184 cm (mean ± standard deviation: 175.3 ± 6.1 cm).
The duration of these 70 ECG signal recordings varies from 401
to 578 minutes (mean ± standard deviation: 432 ± 32 min) and
the AHI ranges from 0 to 93.5.

The recordings consisted of two sets, each of which contained
35 recordings. The first set (released set) was used for model
construction and parameter estimation. The second set (withheld
set) was used to assess and validate our method. A total of 17 268
segments were included in the withheld set; of these segments,
10 718 were annotated as “normal” and the remaining 6550 were
annotated as “apnea.” In this study, recordings with AHI ≥ 5
were defined as OSA positive; otherwise, they were categorized
as OSA negative. In this way, the withheld set contained 24 OSA
positive recordings and 11 OSA negative recordings.

V. METHODOLOGY

A. Preprocessing

Previous studies have revealed that RR intervals and EDR
signals may contain critical information about OSA occurrence
[26], [28]. Hence, a preprocessing procedure is applied to ac-
quire RR intervals and EDR signals from the original ECGs.
The RR interval generally measures the duration of a heartbeat
cycle and is obtained by calculating the time span between ad-
jacent QRS (Q wave, R wave, and S wave) peaks. An external
package from the BIOSIG-toolbox was employed in this study
to locate the peaks of QRS complexes [23], [24]. Because of the
existence of physiologically uninterpretable points within the
generated RR intervals, a median filter proposed by Chen et al.,
was adopted to eliminate those underlying abnormal values [25].

Besides RR intervals, EDR signals were also derived and
studied in the literature [15], [26], [27]. EDR signals generally
reflect respiratory activities in terms of relative motions between
the electrodes and the heart since the electrical impedance of
the thoracic cavity changes during breathing cycles [23]. In this
study, we followed the procedure described in [26] to obtain
these signals.

B. Feature Extraction

Various features which may provide critical information for
OSA detection can be extracted from RR intervals and EDR
signals through a number of extraction methods [26], [29], [30].
In our study, all features in the feature pool, including 24 fea-
tures from RR intervals and 8 features from EDR signals, were
extracted on a minute-by-minute basis; these features are listed
as follows:

1) Mean, standard deviation, skewness, and kurtosis of RR
intervals.

2) The first five serial correlation coefficients of RR inter-
vals.

3) The NN50 measure (variant 1), defined as the number of
pairs of adjacent RR intervals where the first RR interval
exceeds the second one by more than 50 ms.

4) The NN50 measure (variant 2), defined as the number
of pairs of adjacent RR intervals where the second RR
interval exceeds the first one by more than 50 ms.

5) Two pNN50 measures, defined as each NN50 measure
divided by the total number of RR intervals.

6) The SDSD measure, defined as the standard deviation of
the differences between adjacent RR intervals.
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Fig. 3. Illustration of a hidden Markov model.

7) The RMSSD measure, defined as the square root of the
average of the squares of differences between adjacent
RR intervals.

8) The Allan factor A(T ) evaluated at a time scale T of 5,
10, 15, 20, and 25 s

A (T ) = E

{
[Ni+1 (T ) − Ni (T )]2}

2E {Ni+1 (T )}

}
(1)

where Ni(T ) is the number of QRS detection points in a
window of length T stretching from iT to (i + 1)T and
E is the expectation operator.

9) Normalized very low frequency (VLF), low frequency
(LF), and high frequency (HF) components of RR in-
tervals where the total power is the sum of the three
components;

10) The ratio of LF to HF of RR intervals;
11) Mean, standard deviation, skewness, and kurtosis of

EDR signal;
12) Normalized VLF, LF, and HF of EDR signal where the

total power is the sum of the three components;
13) The ratio of LF to HF of EDR signal.
It should be noticed that before feature extraction, RR inter-

vals and EDR signals were normalized to mean ‘0’ and stan-
dard deviation ‘1’ in each recording to reduce the difference
among subjects. After feature extraction, all features were lin-
early scaled into the same range by the following equation:

x∗ =
x − xmin

xmax − xmin
, (2)

where x is a record of a feature to be scaled, xmin is the minimum
value of the feature in the dataset, xmax is the maximum value
of the feature in the dataset, and x∗ is the record of the feature
after scaling. There are two reasons for feature scaling. First,
some classifiers are sensitive to the scale of features such as
KNN which was used in this study. Scaling all features into the
same range avoids features in greater numeric ranges dominat-
ing those in smaller numeric ranges. Second, gradient descent
algorithm converges much faster with feature scaling, and thus,
the computational time required for training the classifiers can
be saved.

C. Hidden Markov Model

In this section, we briefly introduce the HMM and the cor-
responding parameter estimation algorithm for OSA detection.
An HMM is a statistical Markov model with two sequences:
the unobservable Markov states and the observations. Fig. 3 il-
lustrates an HMM in which an observation Xt depends on the

corresponding Markov state Yt and a Markov state Yt depends
on the previous state Yt−1 . The notations in the HMM are listed
as follows:

Y1:T : The Markov state sequence up to time T , Y1:T =
{Y1 , Y2 , . . . , YT };

X1:T : The observation sequence up to time T , X1:T =
{X1 ,X2 , . . . ,XT };

S: The Markov state space, S = {0, 1, . . . ,K − 1} where K is
the total number of different states in the state space S;

Yt : The Markov state at time t, Yt ∈ S;
X t : The observation at time t, X t is a continuous random

vector;
π: The initial probability distribution of the Markov state, π =

(π0 , π1 , . . . , πK−1) where πi = P (Y1 = i);
A: The transition probability matrix, A = [ai,j ]K×K where

ai,j = P (Yt+1 = j|Yt = i);
μi(x): The emission distribution of the observations, μi(x) =

P (X t = x|Yt = i);
p: The marginal probability distribution of Markov states, p =

(p0 , p1 , . . . , pK−1) where pi = P (Yt = i); and
fi(x): The observation-to-state classifier, fi(x) = P (Yt =

i|X t = x).

According to the probability definition, the following equa-
tions must be satisfied:

K−1∑
i=0

πi = 1,

K−1∑
i=0

pi = 1,

K−1∑
i=0

aj,i = 1,∀j ∈ S. (3)

As the conditional probability of the observations can be
calculated by Bayesian rule

P (X t = x|Yt = i) =
P (Yt = i|X t = x) P (X t = x)

P (Yt = i)

∝ P (Yt = i|X t = x)
P (Yt = i)

(4)

the emission distribution μ can be decomposed into the clas-
sifier f and the marginal probability distribution p. As a re-
sult, an HMM can be generatively characterized by the pa-
rameters Θ = (π,A, μ) or discriminatively by the parameters
Θ̃ = (π,A,p, f) [31]. Although these two expressions are the-
oretically equivalent, discriminative HMMs are preferable to
generative HMMs in our study. The advantages of discrimi-
native HMMs are twofold. First, it reduces the complexity of
estimating the multivariate emission distribution μ in genera-
tive HMMs, especially when the dimension of observation X t

is large and the state space S is relatively small as in OSA detec-
tion. Second, discriminative HMMs are compatible with various
existing segment-based classifiers from previous studies; thus,
they are more applicable for analyzing segmented ECG signals.

In this study, each minute-by-minute segment of the ECG
signals has a hidden Markov state Yt with state space S =
{0(normal), 1(apnea)}, and the corresponding observation X t

is a vector composed of the features extracted from the segment.
Each ECG recording is modeled as a Markov chain. According
to our assumptions, i.e., the distribution of features is subject-
independent and the transition probabilities between states are
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subject-specific, different ECG recordings have the same clas-
sifier f but different transition probability matrices A.

The likelihood function of a Markov chain with known
Markov states Y1:T , known observations X1:T , and unknown
model parameters π,A, f can be written as (see Appendix I for
more details)

L
(
Y1:T = y1:T ,X1:T = x1:T |Θ̃

)

∝ πy1 ·
T∏

t=1

fyt
(xt)

T∏
t=2

ayt−1 ,yt
. (5)

Maximum likelihood estimation (MLE) is used to obtain these
unknown parameters. Since these three unknown parameters in
the likelihood function are assumed to be mutually indepen-
dent, the three components of the likelihood function can be
separately maximized:

1) Without loss of generality, the first component, πy1 can
be set to 1. This step agrees with the empirical fact that
all Markov chains begin with the same state (normal)
since apnea does not usually occur at the beginning of the
overnight ECG signals when subjects are not totally in
sleep.

2) For the second component
∏T

t=1 fyt
(xt), we establish a

classifier to predict the state yt of each segment given the
observation xt . The associated parameters are estimated
by training the classifier with the extracted features.

3) The third component
∏T

t=2 ayt−1 ,yt
can be maximized by:

âi,j =
ni,j

ni,·
(6)

where ni,j is the empirical transition frequency from state i to
state j, and ni,· is the total empirical frequency for leaving from
state i in the Markov chain (see Appendix II for more details).

D. Feature Selection

In clinical practice, only parsimonious features with reason-
able interpretations are accepted by physicians and supple-
mented for OSA diagnosis. Thus, a feature selection step is
needed to exclude insignificant features and reduce the risk of
incorrect detection. Here, a scheme of stepwise feature selection
with leave-one-out cross-validation (LOOCV) was adopted. The
feature selection procedure is described as follows:

Step 1 (Initialization): Denote the whole set of the feature pool
as Ω. Set the best feature subset B = ∅, and the discarded
feature subset D = ∅.

Step 2 (Forward selection): For each feature l ∈ Ω and l /∈ D,
construct a temporary feature subset El = B ∪ {l}, which
is obtained by adding the feature l to B. Conduct LOOCV
within subset El and put the feature lmax which leads to
the maximum LOOCV accuracy into the best feature subset
B = B ∪ {lmax}.

Step 3 (Backward selection): For each feature l ∈ B, construct
a temporary feature subset El = B − {l}, which is obtained
by removing the feature l from B. Conduct LOOCV within

subset El and check the feature lmax from El which leads
to the maximum LOOCV accuracy. If the accuracy is higher
than the original LOOCV accuracy based on B, remove the
feature out of the best feature subset B = B − {lmax} and put
it into the discarded feature subset D = D ∪ {lmax}. Repeat
this step until subsets B and D do not change.

Step 4: Iterate Steps 2 and 3 until B ∪ D = Ω. Then, features
in B are selected for constructing classifiers.

E. OSA Detection

During OSA detection, we employed the Baum–Welch al-
gorithm to estimate the unobservable Markov states Yt and the
unknown parameters in our Markov model, including the initial
probability distribution π and the transition probability matrix
A [32], [33]; here, A is unknown because of the assumption
of subject-specific transition probabilities. Define the forward
variable αt(i) as the probability of partial observation sequence
up to time t with state i at time t given model parameter set Θ̃:

αt (i) = P
(
x1 ,x2 , ...,xt , yt = i|Θ̃

)
. (7)

The backward variable βt(i) is defined as the probability of
partial observation sequence from time t + 1 to T , given state i
at time t and model parameter set Θ̃:

βt (i) = P
(
xt+1 ,xt+2 , ...,xT |yt = i, Θ̃

)
. (8)

Then, OSA detection based on the discriminative HMM can
be conducted according to the following procedures:

Step 1: Set the initial estimation of π and A as π(0) =
(π(0)

0 , π
(0)
1 , . . . , π

(0)
K−1) and A(0) = [a(0)

i,j ]K×K , where K is
the total number of different states in the state space. And set
n = 0.

Step 2: Initialize forward and backward variables by

α1 (i) = π
(n)
i

fi (x1)
pi

(9)

βT (i) = 1 (10)

for ∀i ∈ S, where S = {0, 1, . . . ,K − 1} is the state space.
Step 3: Calculate all forward variables and backward variables

recursively by

αt+1 (i) =

[
K−1∑
k=0

αt (k) a
(n)
k,i

]
fi (xt+1)

pi
(11)

βt (i) =
K−1∑
k=0

a
(n)
i,k βt+1 (k)

fk (xt+1)
pk

(12)

for ∀i ∈ S and t = 1, 2, . . . , T − 1.
Step 4: Calculate the probability of state i at time t and state j

at time t + 1 given all observations by

ξt(i, j) =
αt(i)ai,j βt+1(j)

P (X1:T = x1:T |Θ̃)
fj (xt+1)

pj
(13)
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Fig. 4. Accuracy and the number of selected features in each LOOCV
iteration.

for ∀i, j ∈ S, t = 1, 2, . . . , T − 1, and

P
(
X1:T = x1:T |Θ̃

)
=

K−1∑
i=0

K−1∑
j=0

αt (i) ai,j βt+1 (j)
fj (xt+1)

pj
. (14)

Step 5: Calculate the probability of state i (i ∈ S) at time t
(t = 1, 2, . . . , T − 1) given all observations by

γt (i) =
K−1∑
j=0

ξt (i, j) . (15)

Step 6: Update the estimation of π and A by

π
(n+1)
i = γ1 (i) (16)

a
(n+1)
i,j =

∑T −1
t=1 ξt(i, j)∑T −1
t=1 γt(i)

. (17)

Step 7: If the estimation of π and A converges to stable values,
stop the algorithm; otherwise, set n = n + 1 and go back to
step 2.

It should be stated that the latest updated estimation of γt(i)
presents the posterior probability distribution of Markov states
for each segment, and thus, it can be used to detect OSA events.

VI. RESULTS

A. Feature Selection

In theory, due to the generality of our proposed approach, a
variety of self-designed classifiers can be employed in feature
selection. Here, as SVM has been widely used in classification
problems, we chose an SVM with Gaussian radial basis function
kernel in this study. Fig. 4 provides the selection procedure with
accuracy of LOOCV as well as the number of selected features
at each iteration. The performance of the classifier improves
with increasing number of selected features and reaches a stable
level after nine iterations, at which a maximum accuracy of
82.7% is achieved.

TABLE I
PER-SEGMENT OSA DETECTION PERFORMANCE METRICS

IN THE WITHHELD SET

Accuracy(%) Sensitivity(%) Specificity(%) AUCa

SVM 81.2 75.5 84.7 0.889
HMM+SVM 86.2 82.6 88.4 0.940
LR 81.2 74.4 85.4 0.883
HMM+LR 86.2 80.0 89.9 0.939
LDA 80.5 83.1 78.9 0.881
HMM+LDA 85.3 77.5 90.1 0.933
KNN 80.7 75.3 83.9 0.881
HMM+KNN 84.5 74.0 90.8 0.924

a AUC: Area under receiver operating characteristic curve.

Fig. 5. Posterior probability produced by SVM and SVM-based HMM in
30 min of a recording in the withheld set.

The selected features are listed as follows:
1) Mean value of RR intervals.
2) The second and third correlation coefficients of RR inter-

vals.
3) The pNN50 measure (variant 2).
4) The SDSD measure.
5) Normalized VLF of RR intervals.
6) Normalized VLF, LF, and the ratio of LF to HF of EDR

signal.

B. Per-Segment OSA Detection

Upon determination of the selected features, we employed
several popular classifiers including SVM, logistic regression
(LR), linear discriminant analysis (LDA) and KNN, to evaluate
the performance of the proposed OSA detection method. The
overall performance of these classifiers and HMMs on the with-
held set, including accuracy, sensitivity, specificity, and area
under curve (AUC), were calculated and compared in Table I.
Results reveal that the detection performance of the model con-
sidering the temporal depenence via the proposed HMM-based
detection approach, is generally better than that of all other
classifiers that do not consider temporal dependence.

In order to compare the performance of segment-based clas-
sifiers and HMMs visually, the posterior probabilities of the
OSA produced by the SVM and SVM-based HMM within
30 min of a recording in the withheld set are shown in
Fig. 5. The actual annotations of the first 18 min segments are
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TABLE II
PER-RECORDING CLASSIFICATION METRICS IN THE WITHHELD SET

Acc.(%) Sen.(%) Spec.(%) AUC Corr.

SVM 80.0 100 36.4 1.00 0.839
HMM+SVM 97.1 95.8 100 1.00 0.860
LR 74.3 100 18.2 1.00 0.847
HMM+LR 97.1 95.8 100 1.00 0.875
LDA 68.6 100 0.00 1.00 0.833
HMM+LDA 97.1 95.8 100 1.00 0.837
KNN 91.4 100 72.7 1.00 0.810
HMM+KNN 91.4 87.5 100 0.985 0.811

normal, and the remaining 12 min are OSA as shadowed by a
red rectangle. As illustrated in Fig. 5, the posterior probability
produced by SVM-based HMM accurately identifies the OSA
events with an increasing probability as time goes, which further
demonstrates the advantage of the proposed SVM-based HMM
over the conventional SVM approach that ignores the temporal
dependency.

C. Per-Recording Classification

For per-recording classification, we compare the expected
number of minutes with apnea per hour based on our proposed
approach with the clinical standard of AHI as the threshold.
Specifically, if the expected number of minutes with apnea per
hour of a certain recording is greater than 5, the recording is
considered as an OSA positive recording; otherwise the record-
ing is considered as OSA negative. Since both the classifiers and
HMMs provide a probability of apnea at each segment, the ex-
pected number of minutes with apnea per hour can be calculated
as

N̂MAf =
60
T

T∑
t=1

f1(xt) (18)

N̂MAHMM =
60
T

T∑
t=1

γt(1) (19)

where T/60 is the number of hours as the ECG signals are
segmented minute by minute. The per-recording classification
performance metrics of segment-based classifiers and HMMs,
including accuracy, sensitivity, specificity, and AUC, are listed
in Table II. It is worth stating that almost every classifier ob-
tained an AUC of 1. This is mainly because the per-recording
classification is based on combining the results of per-segment
OSA detection, and all the segment-based classifiers and HMMs
attain a high accuracy in per-segment OSA detection. To better
demonstrate the performance of the segment-based classifiers
and HMMs in the per-recording classification, we additionally
provide the correlation between the actual AHI and the calcu-
lated number of minutes with apnea per hour in Table II. It can
be observed that the correlation measures of HMMs are always
higher than these conventional classification methods without
considering temporal dependency.

Fig. 6. ROC curves of SVM and HMM on the withheld set.

VII. DISCUSSION

A. Effects of Temporal Dependency

The results obtained from both per-segment OSA detection
and per-recording classification reveal that our proposed ap-
proach presents significantly improved detection performance.
To further evaluate the detection capability of our proposed
approach, receiver operating characteristic (ROC) curves were
generated. Considering the limited size of our paper, only the
ROC curves of the SVM and SVM-based HMM are shown in
Fig. 6. The ROC curve of the SVM-based HMM is consistently
found above the ROC curve of SVM. This finding demonstrates
the superiority of our proposed method for OSA detection when
we consider the temporal dependence of segmented signals. It
can also be shown theoretically that the segment-based classi-
fiers are special cases of HMMs, and when the segmented sig-
nals exhibit strong autocorrelation, HMMs are a better option
for OSA detection than conventional classifiers (see Appendix
III for more details).

B. Robustness Evaluation

To verify the performance of the proposed approach in dif-
ferent datasets, tenfold cross-validation was conducted. Sev-
enty recordings were divided randomly into ten sets. In ev-
ery iteration, the SVM and SVM-based HMM were trained on
nine selected sets, and then, tested on the remaining set; per-
segment testing accuracies were also calculated. Fig. 7 shows
the boxplots of the ten accuracy values obtained for SVM and
SVM-based HMM. While SVM accuracy ranged from 76.9%
to 84.4% (mean ± standard deviation, 81.9% ± 2.35%), SVM-
based HMM ranged from 80.7% to 90.4% (mean±standard
deviation, 86.4% ± 3.61%). We can, thus, conclude that our
method performs consistently and significantly better in differ-
ent datasets.

C. Comparison With Previous Work

Recall that our SVM-based HMM can achieve an accu-
racy of 86.2% for per-segment OSA detection and an accuracy
of 97.1% for per-recording classification. These results were
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Fig. 7. Boxplots of OSA detection accuracy in tenfold cross-validation.

compared with the existing literatures. For per-segment OSA
detection, the results obtained in [17] where an accuracy of
88% were achieved, which is slightly higher than our result,
was reported. However, their work requires high-quality dataset
and the reported result is based on the partial dataset in which 25
ECG recordings were removed before analysis since the criteria
of data quality were not satisfied. Other studies including [18],
[20], and [34] also develivered high per-segment OSA detection
accuracies which are 89.9%, 88.6%, and 99.2%, respectively.
However, among them, [18] and [20] used the released dataset
for the validation instead of the whole dataset; [20] detected
OSA events in ECG segments based on the historical data from
the same ECG recordings; and [34] eliminated one third of the
data with a high noise in the preprocessing step. In this regard,
our approach is more robust and performs comparatively well
on independent datasets without requiring preselection of high-
quality data because the quality of the collected signals is not
always satisfactory in practice. Furthermore, another advantage
of our method is the generality and flexibility since various ex-
isting detection algorithms can be directly integrated into our
HMM framework.

The results of the present study and other recent studies in
terms of per-recording classification are compared in Table III.
Among the listed studies, the per-recording classification tasks
of [27] and [38] are different from ours. In these studies, record-
ings were defined as control cases, borderline cases, or apnea
cases based on the number of minutes with apnea. The per-
recording classification task was to classify nonborderline cases
into control cases and apnea cases. In order to compared with
[27] and [38], we tested the proposed method in distinguishing
control cases with apnea cases on the same dataset. As a result,
29 of the 30 nonborderline cases in the withheld set were suc-
cessfully classified with an accuracy of 96.7%. Combined with
Table III, this result demonstrates that our method achieves a
high accuracy and sensitivity.

VIII. CONCLUSION

We investigated the temporal dependence existed in the seg-
mented ECG signals and its influence on the OSA detection.
A discriminative HMM was established to capture this tempo-
ral dependence. Under the assumption of subject-independent
emission distribution and subject-specific transition probabili-

TABLE III
COMPARISON OF PER-RECORDING CLASSIFICATION RESULT BETWEEN OUR

METHOD AND SEVERAL OTHER STUDIES

Reference Year Classifier Accuracy Sensitivity Specificity

Macros
et al. [35]

2009 QDA, LDA,
KNN, LR

87.6% 91.1% 82.6%

Khandoker
et al. [15]

2009 SVM 92.9% 92.4% 93.8%

Alvarez
et al. [36]

2010 LR 89.7% 92.0% 85.4%

Morillo and
Gross
[37]

2013 PNN 93.9% 92.4% 95.9%

De Chazal
et al.a

[27]

2000 LDA 100% 100% 100%

McNames
and
Fraserb

[38]

2000 visual inspection 100% 100% 100%

Our
approach

HMM+SVM 97.1% 95.8% 100%

a,bThe per-recording classification tasks of these two studies are different from ours.
PNN: probabilistic neural networks

ties, we constructed a detection procedure to capture individual
differences among a suspect population. Features for our HMM-
based approach were suggested through an LOOCV feature se-
lection process. The proposed method was verified in terms of
accuracy, sensitivity, and specificity by using real ECG record-
ings, and accuracies of 97.1% for per-recording classification
and 86.2% for per-segment OSA detection were observed. These
results reveal that our approach achieves more satisfactory per-
formance than previous segment-based classifiers and existing
approaches. Our HMM-based approach is compatible with var-
ious segment-based classifiers, and thus, provides a basis for
future development of diagnostic systems that are not limited to
OSA detection. Since only ECG signals are used in our model,
the proposed approach promotes the home-based OSA screen-
ing and the development of reliable wearable devices for home
healthcare services.

Future research study may focus on two aspects. First, the
emission distribution in the HMM may be varied for differ-
ent suspects because each subject presents unique physiological
conditions. A well-estimated emission distribution determined
by the subject’s physiological characteristics may provide more
accurate diagnostic information. Second, we observed that emis-
sion distributions may depend on the sleeping stages; thus, the
Markov chain in our proposed model can be divided into several
segments according to the sleeping stage with the help of do-
main knowledge to elucidate more critical information regarding
OSA occurence.

APPENDIX I

Appendix I here derives the likelihood function of the Markov
chain

L
(
Y1:T = y1:T ,X1:T = x1:T |Θ̃

)

= πy1 ·
T∏

t=1

μyt
(xt) ·

T∏
t=2

ayt−1 ,yt
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= πy1 ·
T∏

t=1

fyt
(xt) · P (X t = xt)

pyt

·
T∏

t=2

ayt−1 ,yt

∝ πy1 ·
T∏

t=1

fyt
(xt)

T∏
t=2

ayt−1 ,yt
. (20)

It is worth noting that the marginal probability distribution
p represents the prior information about the proportion of nor-
mal and apnea segments. Therefore, the value of p should be
determined by domain knowledge or other methods. If no prior
information is available, a method proposed in Appendix IV can
be used to estimate p.

APPENDIX II

Appendix II here obtains the upper bound of the third com-
ponent in the likelihood function of the Markov chain. By the
inequality of arithmetic and geometric means,

T∏
t=2

ayt−1 ,yt
=

T∏
t=2

nyt−1 ,yt

T∏
t=2

ayt−1 ,yt

nyt−1 ,yt

≤
T∏

t=2

nyt−1 ,yt

(
1

T − 1

T∑
t=2

ayt−1 ,yt

nyt−1 ,yt

)T −1

=
T∏

t=2

nyt−1 ,yt

⎛
⎝ 1

T − 1

K−1∑
i=0

K−1∑
j=0

ai,j

⎞
⎠

T −1

=
T∏

t=2

nyt−1 ,yt

(
K

T − 1

)T −1

(21)

where ni,j is the empirical frequency for the Markov process
to transit from state i to state j, and K is the total number of
different states in the state space. The equal sign holds if and
only if

ay1 ,y2

ny1 ,y2

=
ay2 ,y3

ny2 ,y3

= · · · =
ayT −1 ,yT

nyT −1 ,yT

= kc (22)

where kc is a constant. For any i, j that ni,j 	= 0, this simplifies
to

ai,j

ni,j
= kc . (23)

Since
∑k−1

j=0 ai,k = 1, the original term is maximized when:

âi,j =
ni,j

ni,·
. (24)

APPENDIX III

Appendix III here shows that segment-based classifiers are
special cases of HMMs. In HMMs, the posterior probability
distribution of states given observations can be written as

PHMM (Y1:T |X1:T )

=
P (X1:T |Y1:T ) P (Y1:T )

P (X1:T )

=
∏T

t=1 P (X t |Yt) · P (Y1)
∏T

t=2 P (Yt |Yt−1)
P (X1:T )

=
T∏

t=1

P (Yt |X t) P (X t)
P (Yt)

· P (Y1)
∏T

t=2 P (Yt |Yt−1)
P (X1:T )

=
∏T

t=1 P (Yt |X t) ·
∏T

t=1 P (X t) ·
∏T

t=2 P (Yt |Yt−1)

P (X1:T ) ·
∏T

t=2 P (Yt)
.

(25)

On the other side, this posterior probability in classifiers can
be written as

Pf (Y1:T |X1:T )

=
P (X1:T |Y1:T ) P (Y1:T )

P (X1:T )

=
∏T

t=1 P (X t |Yt) ·
∏T

t=1 P (Yt)
P (X1:T )

=
∏T

t=1 P (Yt |X t)
∏T

t=1 P (X t) ·
∏T

t=1 P (Yt)∏T
t=1 P (Yt)P (X1:T )

=
∏T

t=1 P (Yt |X t)
∏T

t=1 P (X t)
P (X1:T )

. (26)

Hence,

PHMM (Y1:T |X1:T ) = Pf (Y1:T |X1:T )
∏T

t=2 P (Yt |Yt−1)∏T
t=2 P (Yt)

.

(27)
In this way, we proved that the classifiers are special cases of

HMMs. When ∏T
t=2 P (Yt |Yt−1)∏T

t=2 P (Yt)
= 1, (28)

HMMs reduce to classifiers (e.g., when P (Yt |Yt−1) =
P (Yt) for all t = 2, 3, . . . , T ). Since HMMs approximate
P (Y1 , Y2 , . . . , YT ) by P (Y1)

∏T
t=2 P (Yt |Yt−1) rather than∏T

t=1 P (Yt) as is in the classifiers, HMMs are better choice
than segment-based classifiers when the state sequence demon-
strates strong autocorrelation.

APPENDIX IV

Appendix IV here provides a method to estimate the marginal
distribution when no prior information is available. Our idea is
to select a marginal probability distribution that lead to the
maximum OSA detection accuracy if we apply HMMs to the
training data

p̂ = argmin
p

||y1:T − ŷ1:T

(
Θ̃

)
||0 (29)

where the parameter Θ̃ = (π, A,p, f). Here, π, A, f can be
estimated by MLE as mentioned in the paper, and

ŷ1:T

(
Θ̃

)
= argmax

ŷ1 :T

L
(
Y1:T = ŷ1:T |X1:T = x1:T , Θ̃

)
,

(30)
in which Viterbi algorithm can be used for OSA detection given
parameter Θ̃ and observations x1:T [31], [32].
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