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ABSTRACT

In condition monitoring, multiple sensors are widely used to simultaneously collect measurements
from the same unit to estimate the degradation status and predict the remaining useful life. In
this article, we propose a generic framework for multisensor degradation modeling, which can be
viewed as an extension of the degradation models from one-dimensional space to multi-dimen-
sional space. Specifically, we model each sensor signal based on random-effect models and char-
acterize failure events by a multi-dimensional failure surface, which is an extension of the
conventional definition of the failure threshold for a single sensor signal. To overcome the chal-
lenges in estimating the failure surface, we transform the degradation modeling problem into a
supervised classification problem, where a variety of classifiers can be incorporated to estimate
the degradation status of the unit based on the underlying signal paths, i.e., the collected sensor
signals after removing the noise. As a result, the proposed method gains great flexibility. It can
also be used for sensor selection, can handle asynchronous sensor signals, and is easy to imple-
ment in practice. Simulation studies and a case study on the degradation of aircraft engines are
conducted to evaluate the performance of the proposed framework in parameter estimation
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and prognosis.

1. Introduction

With the rapid development of sensor technology, condition
monitoring has been widely adopted in attempts to limit or
even prevent unexpected failures and reduce the mainten-
ance cost of critical units such as machines, automotive bat-
teries, and aircraft engines. In condition monitoring, the
degradation modeling and analysis of the signals collected
by sensors play a critical role in estimating the degradation
status and predicting the Remaining Useful Life (RUL) of
units (Nelson, 1990; Meeker and Escobar, 1998). Currently,
most of the literature on degradation modeling focuses on
analyzing a single sensor signal (Si et al. 2011; Ye and Xie,
2015). However, as discussed in Brotherton et al. (2002) and
Jardine et al. (2006), a single sensor signal is often insuffi-
cient to fully characterize the degradation status of the unit,
as one sensor only collects measurements with respect to
one characteristic of the degradation process. In order to
gather information from different characteristics and predict
the RUL more accurately, it has become common practice
to deploy multiple sensors to monitor one unit simultan-
eously. This creates a pressing need for multisensor degrad-
ation modeling.

The key problem in multisensor degradation modeling
lies in how to effectively fuse the useful information from
multiple sensor signals to obtain a more accurate estimation

of the degradation status. In the literature, data fusion meth-
ods have been widely employed for multisensor degradation
modeling. Depending on the level at which the fusion oper-
ation is performed, data fusion methods can be generally
categorized into decision-level fusion and data-level fusion
(Hall and Llinas, 1997; Jardine et al., 2006). Decision-level
fusion methods combine different prognostic results. For
example, Hu et al. (2012) calculated the weighted average of
the predicted RULs from multiple algorithms as the final
prediction, where the weights were determined by cross val-
idation. A similar approach was adopted by Baraldi et al.
(2012) where the weights were dynamically determined
using a Kalman filter. As a common limitation, decision-
level fusion methods are heuristic and only produce a point
estimation of the RUL without insights on the underlying
degradation process.

In contrast, data-level fusion methods directly combine
measurements or extracted features from multiple sensor
signals. For instance, Tian (2012) and Loutas et al. (2013)
proposed to rely on machine learning algorithms, such as
neural networks, to directly predict the RUL based on the
most recent sensor measurements. However, these
approaches fail to utilize the unique characteristics of deg-
radation modeling. State-space models have also been used
for multisensor degradation modeling (Xu et al., 2008; Saha
et al., 2009). However, state-space models are limited by the
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assumption of the Markov property, i.e., the future degrad-
ation status depends only on the current degradation status
but not the past, which may be invalid in practice (Bae and
Kvam, 2004; Chen and Tsui, 2013). Fang, Gebraeel and
Paynabar (2017) proposed to extract features from sensor sig-
nals using Functional Principal Component Analysis (FPCA)
and predict the RUL of units by a (log)-location-scale regres-
sion model. However, the extracted features are difficult to
interpret in practice, and all signals are required to share the
same time domain. A recent development is the creation of
multisensor degradation models that are based on a Health
Index (HI) (Liu et al., 2013; Liu and Huang, 2016; Liu et al,
2017; Song et al., 2018; Song and Liu, 2018). The main idea of
HI-based methods is to construct a composite HI via a com-
bination of multiple sensor signals to better characterize the
underlying degradation process. Then the constructed HI is
regarded as a single sensor signal and analyzed based on an
appropriate degradation model. Although the HI-based meth-
ods facilitate visualization and decision making, they are lim-
ited by the flexibility to explore complex relationships
between the underlying degradation process and the sensor
signals. Specifically, HI-based methods assume an analytical
function with known form (e.g., a linear function as consid-
ered by most of these studies) to combine sensor measure-
ments into the HI, but in practice, the function form may be
complex and unknown. Moreover, a common limitation of
the data-level fusion methods is that they only consider syn-
chronous sensor signals, i.e., all sensors collect measurements
at the same time points, which may not be true in practice
since different sensors may have different sampling frequen-
cies and some sensor measurements can be missing during
data collection and transmission.

To the best of our knowledge, the existing literature still
lacks a generic multisensor degradation model that is: (i)
tailored for degradation process; (ii) sufficiently flexible to
be able to explore different relationships between the under-
lying degradation status and the sensor signals; (iii) suitable
for use with asynchronous sensor signals; and (iv) able to
automatically screen out non-informative sensor signals. In
this article, we aim to fill this gap in the literature and pro-
pose a generic framework for multisensor degradation mod-
eling. The proposed method can be viewed as an extension
of degradation models from one-dimensional space to
multi-dimensional space. Existing degradation models based
on a single sensor signal commonly assume that a failure
occurs when the underlying signal path, i.e., the collected
sensor signal after removing the noise, crosses a failure
threshold (Lu and Meeker, 1993; Gebraeel et al, 2005).
Accordingly, with multiple sensors, we consider that a fail-
ure occurs when the trajectory of the multiple signal paths
crosses a failure surface in the multi-dimensional space. We
illustrate how the failure threshold can be generalized to a
failure surface in Figure 1. Figure 1(a) shows the single sen-
sor case. In particular, in the left part of Figure 1(a), the
dots denote the collected sensor measurements at three dif-
ferent time points, the dashed line denotes the underlying
signal path, and the failure threshold is represented by a
horizontal line. The unit fails when the underlying signal
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Figure 1. lllustration of failure threshold and failure surface.

path crosses the failure threshold. The right part of Figure
1(a) is obtained by projecting the signal to the vertical axis,
i.e., we use the sensor (measurement) as the only coordinate
and discard the time coordinate. Since the failure threshold
does not rely on the time, it collapses into a point. In this
way, we characterize the failure event in a one-dimensional
space. As the unit is in operation, the underlying signal path
starts from the bottom and evolves upwards until hitting the
failure threshold. Similarly, in the case of two sensors, we
can project the signals into a curve and represent the failure
event in a two-dimensional space with the two sensors
(measurement) as the two coordinates, which is shown in
Figure 1(b). The three dots denote the collected sensor
measurements at three different time points with # < t, <
t3, and the trajectory of the sensor paths evolves from bot-
tom-left to top-right as the dashed curve shows. In this case,
the unit fails when the trajectory crosses the failure surface,
which is a curve in the two-dimensional space. Similarly,
with more sensors, a multi-dimensional surface can be used
to define the occurrence of failure events.

There are two major tasks for degradation modeling of a
single sensor signal: (i) modeling the underlying path of the
single sensor signal; and (ii) estimating the failure threshold.
Accordingly, for multisensor degradation modeling, the tasks
are: (i) characterizing the underlying paths of multiple sensor
signals; and (ii) estimating the failure surface. For the first task,
existing techniques can be modified to model the underlying
path of each sensor signal by adding an extension that consid-
ers the correlation among multiple sensor signals. However,
for the second task, whereas estimating the failure threshold in
the situation of a single sensor signal is relatively easy, estimat-
ing the failure surface for multiple sensor signals has not been
investigated, due to its significant challenges. The difficulty lies
in that the form of the failure surface is generally unknown and
may be complex and even random. In the literature, HI-based
methods address this problem by assuming the failure surface
to be a hyperplane, and thus equivalently, failure is defined as
the time when a linear combination of the underlying signal
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paths is greater than a failure threshold. However, this assump-
tion is too restrictive and may not be valid in practice.

To resolve this problem, our innovative idea is to trans-
form the multisensor degradation modeling problem into a
supervised classification problem, where a classifier is incor-
porated to define the failure surface and estimate the prob-
ability of failure based on the underlying signal paths. Since
a variety of parametric and nonparametric classifiers can be
employed, the failure surface constructed by our framework
is very flexible. Consequently, the framework has great
potential for implementation in various applications. In add-
ition, we can further show that HI-based method is only a
special case of the proposed framework.

Another advantage is that the proposed framework is
intrinsically capable of solving the sensor selection problem in
multisensor degradation modeling. In practice, it is common
that some sensor signals are not related to the degradation
process and only act as noise. These sensors should be
screened out to avoid overfitting and enhance the prognostic
performance. However, the literature on sensor selection for
degradation modeling and prognosis is still sparse. Most exist-
ing studies heavily rely on domain knowledge and manual
screening for sensor selection (Liu et al., 2013; Song et al,
2018). Fang, Paynabar and Gebraeel (2017) extended Fang,
Gebraeel and Paynabar (2017) and employed a penalized
(log)-location-scale regression with group non-negative gar-
rote penalty for automatic sensor selection, but the procedure
was not well integrated with prognosis and still shared the
same limitations with Fang, Gebraeel and Paynabar (2017), as
previously mentioned. Recently, Kim et al. (2019) developed a
novel HI-based method that could screen out non-informative
sensors. Specifically, they penalized the weights which were
used to linearly combine the multiple sensor signals to con-
struct the HI. In our proposed method, since the degradation
modeling problem is transformed into a classification prob-
lem, the sensor selection problem can be regarded as the fea-
ture selection problem in classification. As a result, various
feature selection methods can be applied.

Last but not least, the proposed framework is easy to
implement and able to consider asynchronous sensor signals,
since the classifier relies on the underlying signal paths but
not the collected sensor measurements. Existing software
packages of popular classifiers can be directly utilized in this
framework. This greatly enhances the applicability of our
method in practice. The rest of this article is organized as
follows. In Section 2, we describe the generic framework in
detail. The proposed method is tested and verified in
Section 3 and Section 4 with simulation studies and a case
study on the degradation of aircraft turbofan engines.
Section 5 presents conclusions and discusses future work.

2. Methodology
2.1. Model formulation

Suppose s sensors are used to monitor each unit simultan-
eously. Let L;;(t) be the sensor measurement for unit i, sen-
sor j, at time ¢, where j =1, ...,s. We decompose L;;(t) into
the underlying signal path D;;(t) and the noise &;;(t):

Lij(t) = Dij(t) + &j(t).

Following existing degradation models on a single sensor
signal (Lu and Meeker, 1993), we model D;;(t) as

where n;(-) is a sensor-specific function, and I';; € RH*L g
an unknown random-effect parameter for unit i, sensor j
with dimension dj. Denote p(I';) as the prior distribution of
Ii=[Tiy;--;T) € R for unit i, where d = Z;Zl d;.
The form of #;(-) should be specified according to the real
application. If domain knowledge and historical data are
available, a corresponding parametric form can be adopted.
Otherwise, if no such information is available, we may con-
sider a generic form #;(t,T;;) :1//j(t)Tl“i.j, where (1) €
R%*! is composed of a series of basis functions with respect
to time ¢ for sensor j. In the literature, there are numerous
studies on how to model a single sensor signal as a specific
form of Equation (1) (Bae and Kvam, 2004; Gebraeel, 2006;
Yu, 2006; Bae et al., 2007; Zhou, Serban and Gebraeel, 2014;
Zhou, Serban, Gebraeel and Muller, 2014). In this article to
highlight our main ideas, we assume the form of ;(t,I';;) is
already acquired.

The main idea of the proposed framework is to infer the
degradation status of a unit based on the underlying signal
paths instead of the original sensor measurements.
Specifically, let the binary variable b;(t) be the status of unit
i at time ¢ where b;(f) = 1 means unit i has already failed at
time ¢ and b;(t) =0 otherwise. We assume b;(t) can be
inferred based on the underlying signal paths D;(t) =
[Dii(1), ..., Dis(1)] T R at time t via a classifier z(+)

p(bi(t) = 1|Di(t)) = =(Di(t)) .

For example, z(D;(t)) = I(D;;(t) > [) compares the value of
D;j(t) with a threshold ! and unit i fails when Dj;(t) > I,
where I(-) is the indicator function. This represents the situ-
ation when a single sensor signal sufficiently characterizes
the degradation process and the degradation models based
on a single sensor signal can be applied. As another
example, z(D;(t)) = I(D;(t)"w > 1) compares a linear com-
bination of D;(¢t) with the threshold I, where w=
[wi,...,ws]T € R"! is the weight vector to combine the
potential signal paths. This represents the main idea of HI-
based methods which construct the HI Ah;(¢) for unit i at
time ¢ bY hi(t) = st':l Li’j(t)Wj = D,’(t)TW + Z]S»:I Si’j(t)Wj =
D,-(t)Tw—l—sg(t) to characterize the underlying degradation
process, where &/(t) = >_. , & (t)w;. Therefore, the HI-based
method is only a special case of the proposed gen-
eric framework.

2.2 Classifier estimation

Our task is to estimate the classifier z(-) based on m historical
units with the collected sensor measurements. Suppose for unit
i, sensor j, measurements L;;(t) are collected at time t=
tijis.tijn,- We use a column vector L;;=
[Li,j(ti.jﬁl), ...7Li,j(ti.j,nfj):| T'e RMi*1 to denote all collected
measurements for unit i, sensor j, and denote L;=
[Lig;---3Lig) € R"*L as all available sensor measurements for



unit i, where n; = 25:1 n;j. It is worth noting that, as men-
tioned before, the collected sensor measurements can be asyn-
chronous, i.e., we do not require that n;;, = n;j, or t;j, » = t;j,
for any ji, j, and n. Such flexibility stems from the fact that our
proposed classifier z(-) relies on the underlying signal paths
D;(t) but not the collected sensor measurements L;(t).
Generally, to train a classifier, we need to collect a set of
training samples with known responses y; and covariates X;
(i=1,...,M), and solve the following equation:

. 1
z = argimnMZjil Q[)’i7 Z(Xi)] + J(2),

where Q(-,) is the loss function, and J(-) is the penalty
function. In our formulation, the responses b;(t) and covari-
ates D;(t) are time series, and thus if D;(¢) are known, the
classifier can be estimated by

2 —agmin. 37 | Qo). 2Di0)dr + T(@) . @

However, the integral is usually difficult to compute in prac-
tice, and existing software packages on popular classifiers
cannot be directly implemented in Equation (2). Therefore,
we take samples at time t =17;;,..., 7oy and approximate
Equation (2) by

1 m N
2mN Zizl Zn:l Q {bi(fi-ﬂ)v Z(Di(fi‘n))} + J(2).
(3)

It is worth noting that the sampling time points t;, are
not the same as the time points ¢;;, when sensor measure-
ments are collected. The main difference is that 7;, is asso-
ciated with the underlying signal paths D;(t) and can be
appropriately set by practitioners to approximate the integral
in Equation (2), whereas t;;, is associated with measure-
ments L;;(t) of sensor j, and thus it is determined by the
data acquisition time. Since we regard the signal path D;(t)
as a function of time ¢ according to Equation (1), the sam-
pling time points 7;, can be any time before or after the
unit failure. In Equation (3), we take the same number of
samples (Di(‘c,-7,,),b,-(r,-,n)) from each unit to ensure each
unit is equally important in the classifier. Also, the number
of samples should be balanced in each class as well; other-
wise, it may lead to an imbalanced classification problem
with poor prediction performance (Japkowicz, 2000; Weiss
and Provost, 2001). Specifically, if historical unit i is known
to fail at time T;, then the responses are

0,Vt<T;
bl(t) - { 1,Vt > Ti7

z = argmin
z

given that the degradation is irreversible, i.e., a failed unit
will stay in that status unless maintenance is performed. In
order to balance the number of samples from the two classes
with b;(t) =0 and b;(f) =1 in the training set, we choose
Tip = T;+ (n—N—1)0 with 6 >0 denoting the difference
between two adjacent sampling points. In this way, we take
2N samples from each unit. Since ;8 =T;—90 < T,
TiN+1 = 1i, and 7;, increases with respect to n, we have
that for the first N samples b,-(r,-,n) =0, n=1,...,N, and for
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Figure 2. lllustration of the classification problem.

the last N samples b,-(ri,n) =1,n=N+1,...,2N. With a
larger N and a smaller ¢, our approximation becomes more
accurate. Figure 2 illustrates our idea for the case of two sen-
sors, where each dashed curve represents the trajectory of the
signal paths D;(t) = [D;;(t), D;2(t)] for one unit, and the
dots represent the sampled points D;(t*) on the trajectory of
the signal paths at different time points t*. For now, we regard
the signal paths D;(t) as known. Although sensor measure-
ments L;(¢) are usually censored, the signal paths D;(t) are
functions of time t according to Equation (1) and thus the tra-
jectory can go beyond the failure surface. In Figure 2, for illus-
tration, we take N = 3 samples before and after the failure of
each unit on the trajectory of the signal paths, and then a clas-
sifier can be used to define the failure surface to separate the
two groups of samples. In practice, the values of N and ¢
should be determined based on the real application.

Another challenge in the above formulation is that the
underlying signal paths Di(tin) = [Di,1(‘fi,n), e Divs(r,»m)} T_
M1 (Tin, Lin)y oo 1(Tins F,-ﬁs)]T are usually unknown, which
depend on the latent random-effect parameter I';, and thus
the estimation method of Equation (3) still cannot be
applied in our case. To solve this problem, we further mod-
ify Equation (3) and consider the expected loss regarding
the posterior distribution of T';

2,:11\] Zil Ziil J Q {bi(‘[i-”)’ Z(Di(‘c’?”))}

z = argmin
z

(4)

Here p(T'j|L;) is the posterior distribution of T'; given the
collected sensor measurements L;, which can be calculated
according to p(T;|L;) o< p(L;|T;)p(T;). With conjugate distri-
bution families, we can obtain analytical expression for the
posterior distribution. For example, if the noises are inde-

pendent and normally distributed &;;(t) ~ N (O,Jf), and

the underlying signal path has the form #;(t,I;) =

T
!//J(t) r,'J‘, then L,J‘FU = ‘I’,JI‘,] -+ 8,7] ~ N”i.j (\l‘i’jrw‘, G}I),

where W;; = [n//j(tu,l), ...,npj(t,-J‘ni_j)]T € R"*% is the design
matrix, & = [ei(tij1)s -ij(fijn;)] € R™Mi*1 contains the
noises, and I is the identity matrix. Therefore, the condi-
tional distribution L;|T; ~ N, (¥;T';,Q;) where W¥;=
diag(¥iy, ..., ¥is) € R and Q; = diag(a?l,...,0%I) €
R"*" are two block-diagonal matrices. In this case, if the
prior distribution is also normal I'; ~ N y(u,X), we can
obtain the posterior distribution I';|L; ~ N 4(p;, X;), where
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-1

=X (W Q'L +X7'y), and X, = (¥/Q 'Y, +T7V)
If there is no analytical solution for the posterior distribu-
tion, numerical methods such as Monte Carlo Markov
Chain can be used to obtain samples from the posterior dis-
tribution p(T';|L;).

Now the main challenge lies in calculating the integral in
Equation (4). Directly calculating the integral is computa-
tionally expensive, and may be even impossible. To reduce
the computation and ensure the easy implementation such
that practitioners can directly utilize the existing software
packages of popular classifiers, we decided to consider some
approximation techniques. In the literature, there are a
number of approximation techniques for calculating the
integral (Pinheiro and Bates, 1995; Bae and Kvam, 2004). In
this article we consider two techniques:(i) the Monte Carlo
method; and (ii) Laplacian approximation as a demonstra-
tion, since these two techniques require fewer restrictions on
the specific form of Equation (4) and can be applied to
many classifiers. In practice, other approximation techniques
can also be employed, depending on the application context.

2.3. Monte Carlo method

The first approximation technique we consider is the Monte
Carlo method. Since

J Q [bi(w), z(Di(r,-,n))} p(Ii|L;)dl
_Zkl [ Tin)s (D’(k)(ri’”))}’

according to the law of large numbers, where
T
DY (v, = [Dl(kl)(r,n) ...,Dﬁfg)(ri,n)}

T
= {771 (Ti,n; rfkl)) y ey Mg (Tll,n; r;(?)] )

and I’ §k> is a draw from the posterior distribution p(I';|L;),
we can estimate the classifier by

. . 1 m
= argianmNK Ei:l Zszl Ziil
Q |:b,‘(fi7n), Z(ng)(’fivn)>i| + j(Z) .

In other words, for each unit i, we draw K samples from the
posterior distribution p(I';|L;). For each sample F( ) we cal-
culate the underlying signal paths D<k (t) and then take sam-
ples at time t = 1;1,..., TisN- Fmally, the sampled D, >(r,;y,1)
and the corresponding b;(7;,) are used for classifier estima-
tion, where existing software packages can be directly utilized.

There are several advantages of the Monte Carlo method.
First, it is flexible with no additional restrictions imposed on
the structure of the model. Second, it does not require the
posterior distribution p(I;|L;) to have an analytical form,
and thus, p(I';]L;) can be calculated using numerical meth-
ods. Third, although Equation (5) is derived in the setting of
a parametric classifier, it can also be used to train a non-
parametric classifier such as k-nearest neighborhood. And
last, the approximation error that is created by use of the
Monte Carlo method does not depend on the dimension of

(5)

I';, and thus it can be used in the case where the dimension
of I'; is high. However, one potential limitation is that the
Monte Carlo method may require a large set of training
samples. Specifically, there are 2mNK samples in the train-
ing set, which may be challenging to the computational
resource. In the next section, we discuss another approxima-
tion technique, Laplacian approximation.

2.4. Laplacian approximation

To facilitate the Laplacian approximation technique, we
rewrite Equation (4) as

. 1 m
z= arginln SN Zi:l J exp [f(I})]dl + T (z) ,

where f(T;) = log{zgl Q[ i(ri,n),z(D,»(f,lﬁn))] } + log p(Ti|L;).
The basic idea of Laplacian approximation is to approximate
f(I';) by the second-order Taylor expansion at the max-
imum point. Specifically, given the classifier z(-), we find
the maximum point

I'} = argmaxf(T)

= argﬁlaxlOg{Ziﬁl Q[yi(fi’n),Z<Di(Ti,n))] } + logp(T'|L;) .
(7)

;) can be

(6)

Then according to the Taylor expansion, f(T
approximated as

f(T) ~ f(I}) V(7)) (0-17),

where V?f(I}) is the Hessian matrix at I'; = I';, and the
first-order derivative of f(I';) vanishes since I} is a stationary
point. Consequently, the integral can be approximated by

Jexp f(T;)]dr;

]' *
*5 (Fi*ri)

~ Jespf(r) 4 (0-13)"w27() ()

. (2n)*
= eXP[f(Fi” ' |—V2f(l"’»‘)| )
Here the operator |-| calculates the determinant. In this

way, Equation (6) is approximated as

2m NZ; 12

argmm

yz Tzn (DT(TIVI))} + j(Z),

(8)

where

= p(I71L)\/ 2n) /|- v2F (1)),

D} (1) = [D}, (0., DLO] " = [y (6T5) o (5T5)]

and I'] can be regarded as a function of z(-). Therefore, z(-)
can be obtained by solving Equation (8).

Based on Laplacian approximation, the size of the train-
ing set is 2mN, which is less than the Monte Carlo method.



However, the training process in Laplacian approximation
involves nested optimization, which requires additional com-
putation. Also, restrictions apply for Laplacian approxima-
tion. First, the classifiers that can be incorporated are
limited. For example, nonparametric classifiers without a
proper loss function may not be used with Laplacian
approximation. Second, to facilitate solving Equation (7), it
is desired that the posterior distribution p(T';|L;) has analyt-
ical expression or close-form approximations. And last,
f(I;) must be twice-differentiable to calculate the
Hessian matrix.

2.5. RUL prediction

For an in-field unit r that has not yet failed, the estimated
classifier Z can be used to predict the RUL. Specifically, sup-
pose the collected sensor signals for unit r are L, € R"*!
the probability of failure before time ¢ can be predicted as

P(Tr<tu‘r) :P(br(t) = llLr) = Jp(br(t) = 1|Dr(t)>P(rr|Lr)dr

)
where T, is the failure time of unit r, and the underlying
signal paths D,(t) depend on the latent random variable T,.
Since the probability p(b,(t) = 1|D,(t)) can be estimated by
z(D,(t)), Equation (9) can be approximated by

— >0 (D).

p(Ty<t|L;) = Er,,[2(D

Here

T
() = [DX(®),... 0% (0] = {m(t; ), (s FE{?)} ,
and I’ £k> is a draw from the posterior distribution p(I';|L,),
which can be computed by p(T',|L,) o p(L,|T,)p(T;) as dis-
cussed in Section 2.2. Let t{ be the current time and assume
that unit r has not failed by time t.. Then, we can update
the distribution of the failure time T, by

p(T,<t|L,)—p(T,<t|L,)
—p(Tr<t|Ly)

p(T,<t|T, > L) =

Since the distribution may be skewed, we use the median
as the point estimator of the failure time, ie., we find T,
such that:

p(Tr<T,|T, > tf,L,) =0.5.

In this way, the RUL can be predicted as T, — t.
Similarly, for a number v with 0 < v < 1, the correspond-
ing quantile T@ of the failure time can be calculated
according to

p(T<T |T, >t L) =v.
Then a prediction interval for the RUL with level o can be

established as ( 5&/2) te T(1 " tf).
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2.6. Sensor selection

As previously mentioned, the proposed framework is intrin-
sically capable of solving the sensor selection problem in
multisensor degradation modeling. This is because as the
degradation modeling problem is transformed into a classifi-
cation problem, the sensor selection problem can be
regarded as the feature selection or variable selection in the
classification. Therefore, a variety of feature selection meth-
ods can be used for sensor selection, such as the wrapping
methods and shrinkage methods. An introduction to feature
selection approaches can be found in Guyon and Elisseeff
(2003). Specifically, wrapping methods typically rely on cross
validation or another technique to select the subset of varia-
bles that minimizes the prediction error on the validation
set. Thus, in theory, wrapping methods can be incorporated
into any multisensor degradation model for sensor selection.
However, wrapping methods are usually time-consuming
and heuristic, and thus have no guarantee that the selected
subset of features is optimal. Shrinkage methods, on the
other hand, rely on the penalty function [J(z) to screen out
unrelated features. Shrinkage methods have the advantage of
less computation and often offer a desirable theoretical
property that ensures that the correct features are selected
with some specific penalty function, such as the LASSO and
the adaptive LASSO penalty (Tibshirani, 1996; Knight and
Fu, 2000; Zou, 2006). Compared with other multisensor deg-
radation models, the proposed framework has the advantage
that it easily incorporates shrinkage methods for sensor
selection, and the existing related software packages can be
directly utilized as discussed in Section 2.3.

3. Simulation studies

In this simulation section, we conduct a series of studies to
evaluate the proposed framework using a simulated dataset.
Specifically, we consider the prognostic performance and fail-
ure surface estimation of our method with different classifiers
in Section 3.2 and test the sensor selection performance with
adaptive LASSO in Section 3.3. Section 3.4 describes the sensi-
tivity to sparse data, and Section 3.5 discusses the selection of
tuning parameters in the proposed framework. The simulation
studies are conducted on a server with 2.20 GHz 16-core CPU
and 192 GB memory using MATLAB 2017a.

3.1. Dataset generation

In this simulation study, we consider four sensors and gen-
erate the underlying signal paths for each unit by

zl(t) -

100
() = (0.6 ———) = |1,0.61°% —
2( ) 12 + ( t+ 5 )

1Y + (0.2t + sin (0.26)) = [1,0.2¢ + sin (0.26)]T,

100
Fin
t+5] "

©) () 1.4 t1'4
,3(t)—r,3 +F,3 40 1>E Fi737

K tl.6
Diy(t) =T\ + T (ﬁ + 3cos (O.It)) = [l’ﬁ +3cos (o.u)} |

with the prior distribution
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Figure 3. The four signals of selected three units in the generated dataset.
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Here ® denotes the Kronecker product and I, is the 4 x 4
identity matrix. In this simulation study, to highlight our
main idea and better evaluate the proposed framework, the
true models of the underlying signal paths described above are
used for classifier estimation and RUL prediction. In addition,
we consider I';;, j=1,2,3,4 are mutually independent for
simplicity. The four sensor signals are randomly generated by
Lij(t) = Dij(t) + ¢ij(t), where &;(t) ~ N(0,10*). As men-
tioned in Section 2.2, in this case, the posterior distribution I';
is also normal and has an analytical expression. A random fail-
ure surface is used to define unit failure, which is a hyperplane
for each unit. Specifically, failure time of unit 7 is defined as

Ti = argmin Di,l(t) + 0.0SDi’z(t) - 0.2D,‘73(t) Z li,
t

where ; is a random number subject to a logistic distribution
with location parameter y; = 15 x 12 = 180 and scale param-
eter g; = 12. Obviously, only the first three sensors are related
to the degradation process and the last sensor should be
screened out using a sensor selection algorithm. After the fail-
ure time T; is calculated, the sensor measurements of each unit
are generated at time t = 1,..., | T;], where |T;] is the largest
integer smaller or equal to T;. As an example, the four gener-
ated signals for three different units are shown in Figure 3.

The true cumulative distribution function of the failure
time T; is

p(T; < 1) :p(li < Di(t) + O.OSDi,z(t)—O-ZDi,s(t))
1
exp(—[1,D;(t) /1] ) + 17

where B, = (—15,1,0.05, 70.2,0)T and o; = 12. Then, the
true distribution of b;(#) is determined by Logistic
Regression (LR) based on D;(t) with the true coefficient
being B,. This classifier is treated as the oracle classifier and

Signal 2

Signal 4

50 100
Time

150

the corresponding prognostic performance is treated as the
benchmark to evaluate the proposed framework.

3.2. Prognostic performance and failure
surface estimation

First, we evaluate the prognostic performance of our proposed
framework. Specifically, we randomly generate m historical units
and estimate the classifier z(-). The estimated z(-) is applied to
another 100 testing units to predict the RUL based on truncated
sensor signals, and we calculate the prediction error as

_ |1,—Ti]

T, (10)

€i
where T; is the true failure time of unit i and T is the pre-
dicted failure time. The average prediction error e across all
testing units is then calculated. This process is repeated for 50
times to obtain the mean and standard deviation of e. In this
study, LR is considered as z(-) because the oracle classifier is
an LR model. In addition, we also employ a Support Vector
Machine (SVM) to consider the case when a different classifier
is used. For LR, the deviance (defined as —2logL,, where L, is
the likelihood function) is regarded as the loss function and no
penalty function is considered, that is

Q(b,z(D)) = —2{Dp + py—loglexp(Dp + p,) + 1]}

and J(z) =0, where B = [py;p] are the coefficients to be
estimated. For the SVM, we use the hinge loss function
Q(b,z(D)) = [1-b(Dp + po)], and  penalty function
J(z) =0.5-p'p, where [a], = max(0,a), b€ {-1,1} with
—1 representing non-failure and 1 representing failure, and
B = [po; p] are the coefficients to be estimated.

When training the classifiers, both approximation meth-
ods, the Monte Carlo method and Laplacian approximation,
are applied. Tuning parameters are set as N = 200, 6 = 0.2,
K =50, i.e., we take samples at 200 different values of 7;,
before the failure time T; and 200 different values after T;
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Figure 4. Prognostic performance of the proposed method with LR and the SVM compared with the oracle classifier.

with an equal space of 0.2, and we draw 50 random samples
r §"> from the posterior distribution p(I';|L;) when imple-
menting the Monte Carlo method. More discussions on how
to choose the tuning parameters will be presented in Section
3.4. The computational time is recorded and compared
between the Monte Carlo method and Laplacian approxima-
tion. As an example, when 100 historical units are available,
for the Monte Carlo method, the training set contains 2 X
10° samples and the training procedure takes around
10seconds for LR and 78 seconds for the SVM on average.
For Laplacian approximation, the training set contains 4 x
10* samples and the training procedure takes around
20 minutes for LR and 23 minutes for the SVM on average.
Clearly, although the Monte Carlo method requires a larger
memory, it is much faster than the Laplacian
approximation.

The prognostic results of our method using Monte Carlo
method based on 25, 50, and 100 historical units are shown
in Figure 4, where the bars denote the mean of e for each
classifier with one standard deviation, and the x-axis denotes
different levels of available sensor measurements. For
example, “0.4” means that the sensor signals of each testing
unit i are truncated at 0.4T7;. The result of Laplacian
approximation is almost the same as the Monte Carlo
method and thus is omitted. As shown in the figure, as
more historical units become available, the prognostic per-
formance of the proposed method based on LR becomes
closer to the oracle classifier. The prediction error of the
SVM is slightly greater than the oracle classifier, but is still
satisfactory. This indicates that the proposed framework can
accurately predict the RUL even with a different classifier.

In addition, to verify the accuracy of our proposed
method in estimating the failure surface, we compare the
estimated failure surface with the true one. In this

simulation study, since f, = (—15,1,0.05,—0.2, O)T, the
underlying true failure surface can be expressed as

—15+1'X1+0.05'XZ—0.2'X3+0'X4:f,

where the random variable ¢ ~ logistic(0,1), and x; repre-
sents the scaled signal path of sensor j, i.e., D;j(t)/d;. With
100 historical units available and LR as the classifier, the
estimated failure surface is

—15+1.001 - x; + 0.049 - x; — 0.207 - x3 — 0.004 - x, = 1.110 - .

As we can see, despite a slight scale difference in the esti-
mated coefficient, the estimated failure surface is very close
to the true failure surface. Similarly for the SVM, the esti-
mated failure surface is

—15+1.001 - x; +0.050 - x, — 0.205 - x3 — 0.003 - x4 =0 .

For the SVM, the estimated failure surface is fixed, and is
very close to the expectation of the true failure surface. As a
result, the estimated failure surfaces of both LR and SVM
are very close to the true failure surface.

3.3. Sensor selection

To screen out non-informative sensors, we regard LR as z()
and adopt the adaptive LASSO penalty due to its oracle
properties (Zou, 2006). The idea of adaptive LASSO is to
penalize each entry of the LR coefficient f except the inter-
cept with different weights, and the penalty function is given
as J(z) = 23 ., %j|B;|, where the weight o; is estimated by
T
AMLE ., ~MLE ~MLE  MLE
y=1/|p; I, B = (/31 sy B ) is the estimated
coefficient by maximum likelihood estimation without pen-
alty, and 7y is a positive number. In this simulation, we
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Figure 5. Proportion of repetitions that the correct sensors are selected.
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choose y =1 as a demonstration. In particular, we randomly
generate m historical units. Then starting with a large value
of 4, which excludes all the sensors, we gradually decrease 4
until three of the four sensors are selected. We repeat this
process for 50 times and calculate the proportion of repeti-
tions that Sensor 4 is the only excluded sensor, which indi-
cates that the sensors are correctly selected. We evaluate the
sensor selection performance with different m and the result
is shown in Figure 5. This figure clearly indicates that as
more historical units become available, the algorithm is
more likely to select the correct sensors. The sensor selection
performance of the proposed method has been further veri-
fied based on another simulated dataset which contains 10
non-informative sensors out of 25 sensors. The conclusion
is similar and thus the details are omitted here.

3.4. Sensitivity to sparse data

In practice, the collected sensor measurements may be
sparse, due to sensor malfunction, limited transmission
bandwidth, data loss, etc. In this simulation study, we con-
sider the case when only a small number of sensor measure-
ments are available. Specifically, we randomly generate 100
units and use LR as the classifier. The LR coefficient ﬁ esti-
mated based on all available sensor measurements is
regarded as the baseline. Then for each signal of a unit, we
randomly draw a fractlon ¢ of measurements and estimate
the LR coefficient B° based only on these measurements.
Since the measurements are drawn separately for each sig-
nal, the available sensor measurements are asynchronous in
this study, to better mimic the practical situation. To show
the sensitivity of our method to the data sparsity, we calcu-
late the relatlve absolute difference A between each entry of
ﬁ and /3 as

~1 AC

|ﬂ j _lﬁ j‘ :

;1

for j=0,1,2,3. We do not consider j =4 because ﬁi is
very close to zero. If the proposed method is not sensitive to
sparse data, the relative absolute difference A; will be small.
This procedure is repeated for 20 times to obtain the aver-
age and standard deviation of Aj. All other parameters are
the same as in Section 3.2. The averaged A; as well as the
standard deviations of the average using Monte Carlo
method and Laplacian approximation are shown in Figure 6

and Figure 7, respectively. Overall, the results are satisfac-
tory because the average relative difference is only around
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Figure 6. Sensitivity of the estimated coefficient to sparse data using Monte
Carlo method.
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Figure 7. Sensitivity of the estimated coefficient to sparse data using Laplacian
approximation.

10%, even if there are only 10% measurements available. A
more detailed comparison between the two figures reveals
that the Laplacian approximation seems to be more robust
to sparse data than the Monte Carlo method. One possible
reason for this behavior is that when the available data is
sparse, the posterior distribution p(I';|L;) has large variance.
Consequently, if K is not large enough, the random samples
I'® cannot represent the posterior distribution p(I;|L;)

1
well, which adds additional variation that increases A;.

3.5. Discussion of tuning parameters

There are three tuning parameters including N, J, and K in
the proposed framework. Generally, N and K should be
large and ¢ should be small to obtain an accurate estima-
tion. However, too large values of N and K may require a
long period of computation and may not be necessary in
practice, and also, as will be discussed later, o cannot be too
small when N is not large enough. In this subsection, we
run a series of simulation studies to assess the effects of
these tuning parameters, which can provide guidance on the
parameter settings. Due to the page limit, we discuss our
conclusions here and the details can be found in
the Appendix.

We recognize that a proper value of N-J is more
important for an accurate approximation than N or ¢ itself.
The physical meaning of N - § can be interpreted as the win-
dow length that we take samples before and after the failure
time T;, and it approximates T; — 7;; or 7;,y — T;. One pos-
sible reason is that usually the failure surface is random in
some “zone” of the multi-dimensional space. If N - ¢ is too
small, most of the samples (D;(t),b;(t)) in the training set
are still within a subspace of this “zone” and thus are not



enough to fully characterize the failure surface. On the con-
trary, with a relatively large N -6, the training set
(D;(t),b;(t)) will contain samples throughout the “zone,”
leading to a more accurate estimation.

We also find that the value of N -6 has different effects
on different classifiers. Some classifiers such as the SVM are
less sensitive to small N-J. One possible reason for this
behavior is that the SVM is only related to a portion of
training samples that are misclassified, which are known as
the supporting vectors (Hastie et al., 2009). With ¢ fixed, a
larger N leads to more samples (D;(t),b;(t)) that are far
away from the failure surface; however, the supporting vec-
tors may remain the same and thus a larger N does not
change the SVM model to any great extent.

Another observation is that with a larger m, a smaller
value of K will be enough for accurate approximation of the
Monte Carlo method. This is reasonable because each unit
represents a sample I'; from the population. However, I'; is
unknown and can only be inferred from the posterior distri-
bution p(T;|L;). If m is small, the samples of T'; cannot
characterize the full sample space and we have to exploit the
subsample space of p(T';|L;) to obtain more information. On
the other hand, if m is large, the full sample space is well
characterized by samples of I';. In this case, using a large K
to fully exploit the subsample space of p(T;|L;) does not
provide much information. Actually this is a favorable prop-
erty for implementing the Monte Carlo method in practice,
which allows us to use a small K when there are many his-
torical units to reduce the computation.

Based on our experience, we summarize the procedure
for specifying the tuning parameters as follows. At first, N -
0 can be chosen as a value around the sample standard devi-
ation of {T;};",, where T; is the failure time of the historical
unit i. The value of N - 6 can be decreased if a SVM is used
as the classifier. Then, the value of § can be specified based
on the desired precision of the prognostic result. For
example, if we only need to predict in which day that the
unit will fail and do not mind if the unit fails in the morn-
ing or in the afternoon, we can choose 6 to be 1day.
Accordingly, the value of N can be specified. Next, we con-
sider the value of K if Monte Carlo approximation is
employed. From our study, we observe that if m K
is around several thousands, the prognostic performance is
usually satisfactory, and K can be determined accordingly.
In addition, if the sensor measurements are sparse or the
measurement error is large, the value of K should be
increased. Finally, based on the fact that with Monte Carlo
approximation, the number of samples in the training set
for the classification problem is 2mNK, we can further
adjust the values of the tuning parameters according to the
available computational resource.

4. Application

In simulation studies of Section 3, we assume that the true
degradation model for each sensor signal as well as the prior
distribution p(T;) is known. In this section, we consider the
case when this information is unavailable, which is common

IISE TRANSACTIONS @ 1297

Table 1. Detailed description of the 21 sensors (Saxena et al., 2008)

Symbol Description Units
T2 Total temperature at fan inlet °R
T24 Total temperature at LPC outlet °R
T30 Total temperature at HPC outlet °R
T50 Total temperature at LPT outlet °R

P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P50/P2) -
Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio -
farB Burner fuel-air ratio -
htBleed Bleed Enthalpy -
Nf_dmd Demanded fan speed rpm
PCNfR_dmd Demanded corrected fan speed rpm
W31 HPT coolant bleed Ibm/s
W32 LPT coolant bleed Ibm/s

in practice. In this case study, we focus on the degradation
modeling of aircraft turbofan engines based on multiple sen-
sor signals.

4.1. Data description

The data was generated by C-MAPSS, a widely used simula-
tion platform to study the degradation of large commercial
aircraft engines (Saxena et al., 2008; Sarkar et al., 2011). The
dataset contains 100 historical units and 100 in-field units
under the same failure mode and the same operation condi-
tion. There are 21 sensors monitoring each unit on a variety
of metrics such as temperature and pressure. The detailed
description of the sensors is provided in Table 1. Sensor meas-
urements are continuously collected until the failure of the
unit occurs. For historical units, the average number of avail-
able measurements from each sensor for each unit is 206. For
each in-field unit, the sensor measurements are available up
to some time point before the failure and the average number
of measurements from each sensor for each unit is 131. The
actual RULs of in-field units are recorded in a separate file.
Our task is to construct a degradation model to predict the
RULs of in-field units and compare with the true RULs to
assess the prognostic performance of the model. The dataset is
available online (Saxena and Goebel, 2008).

In the literature, there are a number of studies on this
dataset, and thus we can compare our result with existing
ones. Specifically, the recent studies of Fang, Gebraeel and
Paynabar (2017) and Song et al. (2018) are selected as
benchmark methods here as their results are among the best
in the literature. Song et al. (2018) proposed a kernel HI-
based method to integrate the HI-based method with kernel
methods in order to extend the fusion function from linear
to nonlinear functions, i.e., the HI could be constructed by a
nonlinear combination of sensor signals based on a certain
kernel function. Specifically, they constructed the HI in a
way such that the “quality” of the constructed HI was maxi-
mized, which was measured by the signal-to-noise ratio for
degradation signals (SNRY). The kernel HI-based method is
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Figure 8. Comparison of the average RUL prediction errors on the in-field units
using our proposed method with LR and the kernel Hl-based method with lin-
ear kernel function based on 11 sensors.

of great interest, as the HI method can be regarded as a spe-
cial case of our proposed method. The second benchmark
study (Fang, Gebraeel and Paynabar, 2017) utilizes FPCA to
extract features from sensor signals and constructs a (log)-
location-scale regression model for RUL prediction.

4.2. Result and comparison

Song et al. (2018) manually selected 11 out of the 21 sensors
for degradation modeling (i.e., T24, T50, P30, Nf, Ps30, phi,
NRf, BPR, htBleed, W31, and W32), whereas Fang, Gebraeel
and Paynabar (2017) considered all 21 sensors. Since we are
interested in comparing with the kernel HI method based
on the same set of sensors, we first analyze the 11 sensors
selected by Song et al. (2018) and compare our result with
the kernel HI method. Then, we conduct an automatic sen-
sor selection, analyze the selected sensors, and compare our
result with both benchmark methods (Fang, Gebraeel and
Paynabar, 2017; Song et al., 2018). In this way, we can verify
if our sensor selection method can improve the prognos-
tic result.

We adopt the same preprocessing procedure as in Song
et al. (2018). Specifically, we standardize the sensor measure-
ments after taking a logarithm transformation. The quad-
ratic degradation model #;(t,I';;) = [1,¢,£*][';; is chosen for
each transformed sensor signal, as it provides a good fit as
shown in existing studies (Liu et al., 2017; Song et al., 2018).
Each sensor is separately modeled for simplicity with the
random-effect parameters I';; assumed to be normal, i.e,
I'ij ~ N(u;, L), where the prior parameters g; and X; can
be estimated from the historical units based on the two-
phase algorithm proposed by Lu and Meeker (1993). We
also assume the noise term &;;(t) ~ N0, ojz .

In this case study, we choose the tuning parameters N =
80,0 = 0.5, and K = 25. Specifically, we choose No = 40,
based on the sample standard deviation of the failure time
of the historical units. Since all the true RULSs of the in-field
units are integers, 6 = 0.5 will be precise enough for our
model, and thus N = 80. With 100 historical units, a simple
choice of K =25 would be able to produce a satisfactory
performance. We consider three popular classifiers including
LR, SVM, and Neural Network (NN). It can be shown that
the LR is equivalent to the HI-based method where the HI
is constructed by a linear combination of sensor signals and
the failure threshold follows the logistic distribution. Thus,
it is interesting to compare the LR result with the kernel
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Figure 9. Comparison of the average RUL prediction errors on the in-field units
using our proposed method with SVM and NN, and kernel Hl-based method
with second-order polynomial kernel function based on 11 sensors.

HI-based method where a linear kernel function is used, i.e.,
the HI is constructed by a linear combination of sensor sig-
nals. Despite the similarity, fundamental differences exist
including: (i) the LR is estimated by solving Equation (4)
while the HI is constructed by maximizing the SNR? metric;
and (ii) the use of LR requires the modeling of each sensor
signal whereas the HI-based method only models the con-
structed HI. These differences lead to different prognostic
results. Song et al. (2018) also used a second-order polyno-
mial kernel function to explore a nonlinear combination of
sensor signals and improved the prognostic result.
Accordingly, we choose nonlinear classifiers including a
SVM with the second-order polynomial kernel and a NN
with a single hidden layer for comparison. For the NN, the
sigmoid function is used as the activation function for the
hidden layer, and the number of neurons is determined to
be 10 based on the 10-fold cross validation.

In Figure 8, we compare the prognostic results of the
proposed method with the LR classifier and the kernel HI-
based method with linear kernel function based on the 11
sensors. The x-axis represents different levels of actual RUL.
For example, “80” means that only in-field units with an
actual RUL less or equal to 80 are considered and “All”
means that all in-field units are considered. The y-axis
denotes the RUL prediction error defined in Equation (10).
The curves represent the average prediction errors on differ-
ent levels of actual RUL using different methods. It is clear
that the LR outperforms the kernel HI-based method with a
linear kernel function. A clear decreasing trend can be
observed in this figure, indicating that the prediction error
decreases with less actual RUL. This is reasonable, since
with less actual RUL, more sensor measurements are col-
lected and we only need to predict over a shorter period.
Similarly, in Figure 9, we compare the prognostic results of
our proposed framework with SVM and NN, and the kernel
HI-based method with a second-order polynomial kernel
based on the 11 sensors. This figure shows that SVM and
NN perform better than the kernel HI-based method when
the actual RULs of in-field units are medium or large.
When the actual RUL is small, the prediction errors of SVM
and NN are slightly larger.

The results shown in Figure 8 and Figure 9 are all based
on the 11 sensors as identified in Song et al. (2018). Next,
we aim to conduct sensor selection using the proposed
framework and try to improve our prognostic results.
Specifically, we choose LR with adaptive LASSO penalty for
sensor selection. Since 7 out of the 21 sensors are constant
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Figure 11. Comparison of the average RUL prediction errors on the in-field
units using our proposed method with LR based on the selected seven sensors
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Figure 12. Comparison of the average RUL prediction errors on the in-field
units using our proposed method with SYM and NN based on the selected
seven sensors and the benchmark methods.

and do not contain any information, we exclude the seven
constant sensors in advance. The adaptive LASSO can pro-
duce a solution path containing different subsets of sensors
corresponding to different tuning parameters A, and these
subsets contain different number of sensors from 1 to 14.
For each subset of sensors in the solution path, we use 10-
fold cross validation to evaluate the average absolute differ-
ence between the predict RULs and the actual RULs based
on the historical units, i.e., the average of |T;—T;|. The best
subset of sensors is selected as the one with minimum abso-
lute difference, which is shown in Figure 10.

As a result, seven sensors are selected including T24,
T50, Nc, Ps30, phi, BPR, and W32. Based on the selected
seven sensors, the prognostic results of our proposed frame-
work with LR, SVM, and NN are updated, and the compari-
sons are shown in Figure 11 and Figure 12. The result of
Fang, Gebraeel and Paynabar (2017) is also included in the
two figures as “FPCA” for comparison. For the LR, the
prognostic result remains similar as before, and actually,
there is a slight improvement for in-field units with moder-
ate RULs. More improvement is observed for SVM and NN.
In both figures, our proposed method performs consistently
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better than the two benchmark methods. These results verify
the effectiveness of our proposed method in sensor selection
and prognostic analysis.

5. Conclusion

In condition monitoring, multiple sensors are widely used to
collect multiple signals from the same unit simultaneously,
so as to improve the estimation of the degradation status
and predict the RUL more accurately. However, most exist-
ing studies on degradation modeling focus on analyzing a
single sensor signal, and the literature still lacks a generic
multisensor degradation model that is tailored for degrad-
ation process, is flexible enough to explore different relation-
ships between the underlying degradation status and the
sensor signals, is suitable for asynchronous sensor signals,
and is capable of screening out non-informative sensor sig-
nals automatically. In this article, we aim to fill the gap in
the literature and propose a generic framework for multisen-
sor degradation modeling, which can be viewed as an exten-
sion of the degradation model from one-dimensional space
to multi-dimensional space. There are two primary tasks
involved in the proposed framework: (i) modeling the
underlying paths of multiple sensor signals; and (ii) estimat-
ing the failure surface in the multi-dimensional space.
Although the first task can be accomplished by modeling
the underlying path of each sensor signal with an extension
that considers the correlation among signals, the second task
has not been investigated before and leads to great chal-
lenges, since the failure surface may be unknown, complex
and random in practice.

Our innovative idea is to transform the multisensor deg-
radation modeling problem into a supervised classification
problem. Since a variety of classifiers can be used to define
the relation between the underlying signal paths and the
degradation status (fail or not), the proposed framework
gains great flexibility in defining the failure surface in the
multi-dimensional space. The HI-based methods in the lit-
erature turn out to be only a special case of the proposed
framework. In addition, the proposed framework is also cap-
able of performing sensor selection by incorporating a vari-
able selection algorithm and can deal with asynchronous
multiple sensor signals. We develop classifier estimation
methods, where existing software packages can be directly
utilized for easy implementation. A series of simulation
studies are conducted to evaluate the proposed method from
different aspects and provide guidelines for choosing the
tuning parameters. A case study on the degradation of air-
craft engines is also conducted, and the results are compared
with existing benchmarks, which shows better prognostic
performance of the proposed framework.

In the future, there are several topics worth investigating.
First, this paper takes samples with equal space as in
Equation (3). However, this strategy may be further
improved, since measurements close to failure are usually
more critical than others. Therefore, an improved sampling
strategy is in need to ensure the optimal balance between
the prognostic performance of the framework and
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computational efficiency. Second, the proposed framework
involves several approximations and tuning parameters. In
addition to the numerical studies described in this article, it
is desired that theoretical analyses are conducted to evaluate
how the approximations and tuning parameters affect the
accuracy of RUL prediction in the proposed framework.
Third, although the proposed framework allows a simultan-
eous modeling of multiple sensor signals through defining
the prior p(I';), the literature on the construction of the
prior p(T’;) in a unified manner is still sparse. It is of great
interest to develop a systematic approach for specifying
p(T';) and analyze the effect of p(T';) on the prognostic per-
formance of the proposed method.
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Appendix
More simulation results

Here we describe the detailed results of three more simulation studies
regarding the tuning parameters N, 6, and K. In the first simulation,
we fix 6 = 0.2 and set N to be different values to see how the esti-
mated coefficient of the classifier changes, where LR and SVM are con-
sidered as the classifiers. A set of randomly generated 100 historical

units is used for classifier estimation. We use the estimated coefficient
500

p~ with N =500 as the baseline, and calculate the relative absolute
difference A]N for each entry j of the estimated coefficient ifN as

AN = N
A]N = |B; —ﬁ;oo/ /)’]4500|‘ The results for LR and SVM are shown in

Figure Al and Figure A2, respectively. Similar to Figure 6 and Figure
7, we do not show the entry corresponding to Sensor 4. The figures
indicate that the relative absolute difference decreases as N increases
for both classifiers. Also, we can see that the relative absolute difference

IISE TRANSACTIONS . 1301

0.8

0.6

0.4

0.2

Relative A bsolute Difference

20 50 100 150 200 300
N

Figure A1. Sensitivity of the estimated coefficient of LR to N.
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Figure A2. Sensitivity of the estimated coefficient of SVM to N.
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Figure A3. Coefficient of variation for each entry of the estimated coefficient
of LR.
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Figure A4. Coefficient of variation for each entry of the estimated coefficient
of SVM.

of SVM is usually much smaller than LR. For SVM, the relative abso-
lute difference becomes stable from N = 200, i.e., the estimated coeffi-
cient of SVM only changes little if we further increases N from 200.
On the other hand, for LR, significant decrease can still be observed
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Figure A5. Effect of K with different number of historical units.

from N = 200 to N = 300. Therefore, LR seems more sensitive to N in
this case.

In the second simulation, we fix N -6 = 40 and choose a series of
pairs of (N,d) from N =20 to N =500. For each pair of (N,J), we

~(N-0
estimate the coefficient ﬁ(N ) of the classifier. Then for each entry of

B (N-(s), we calculate the Coefficient of Variation (CV) across all pairs of

(N, 8), which is defined as the standard deviation divided by the aver-

age. A small value of CV indicates small difference between (o) with
different pairs of (N, J). We repeat this procedure for several times to
obtain the average and standard deviation of CV. The boxplot of CV
for LR and SVM are shown in Figure A3 and Figure A4, respectively,
which shows that only very small difference exists for different pairs of
(N, 0) for both classifiers. Combined with the previous simulation, we
conclude that the value of N-¢ is very important for the estimation
performance of our proposed method.
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The last simulation that we consider is the effect of K with different
number of historical units m. Specifically, for m randomly generated
historical units, we repeat the classifier estimation procedure of the
proposed framework using Monte Carlo method for 50 times. Each

time we randomly draw a different set of K random samples I‘fk) from

the posterior distribution p(I';|L;) and estimate the coefficient of the
~K
LR classifier to be f

oK
ation for each entry of = across the 50 repetitions. If the value of K is

. In this way, we can calculate the standard devi-

large enough, the estimated BK should be stable in different repetitions
and thus the standard deviation should be small. The result is shown
in Figure A5. Generally, the standard deviation decreases as K
increases, which agrees with our intuition. Furthermore, the standard
deviation becomes smaller with more historical units. Therefore, with
more historical units available, a smaller value of K would be enough
for an accurate approximation for the Monte Carlo method.
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