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ABSTRACT
Nowadays multiple sensors are widely used to simultaneously monitor the degradation status of a unit.
Because those sensor signals are often correlated and measure different characteristics of the same unit,
effective fusion of such a diverse “gene pool” is an important step to better understanding the degradation
process andproducing amore accurate prediction of the remaininguseful life. To address this issue, this arti-
cle proposes a novel data fusionmethod that constructs a composite Health Index (HI) via the combination
of multiple sensor signals for better characterizing the degradation process. In particular, we formulate the
problem as indirect supervised learning and leverage the quantile regression to derive the optimal fusion
coefficient. In this way, the prognostic performance of the proposed method is guaranteed. To the best of
our knowledge, this is the first article that provides the theoretical analysis of the data fusion method for
degradationmodelingandprognostics. Simulation studies are conducted toevaluate theproposedmethod
in different scenarios. A case study on the degradation of aircraft engines is also performed, which shows
the superior performance of our method over existing HI-based methods.

1. Introduction

Sensors have been developed that are now widely used to mon-
itor the degradation of critical units such as machines, automo-
tive batteries, and aircraft engines. The collected sensor signals
contain useful informationwith respect to the underlying degra-
dation process, and thus modeling and analyzing the sensor sig-
nals play an important role in estimating the health status and
preventing unexpected failures of units (Nelson, 1990; Meeker
andEscobar, 1998). Although the degradationmodeling of a sin-
gle signal from a single sensor has received considerable atten-
tion in the literature (Jardine et al., 2006; Si et al., 2011; Ye and
Xie, 2015), fewer studies have focused on themodeling ofmulti-
ple signals frommultiple sensors. The need to consider multiple
signals from multiple sensors arises when a single sensor signal
cannot fully characterize the complex and stochastic nature of
the underlying degradationmechanism (Brotherton et al., 2002;
Saxena et al., 2008). As a result, it is a common practice to deploy
multiple sensors to simultaneously monitor different degrada-
tion characteristics of the same unit; however, the number of
studies on the degradation modeling of multiple sensor signals
is still limited.

As different sensor signals are often correlated and may con-
tain only partial information regarding the health status of a
unit, effective fusion of such a diverse “gene pool” from multiple
sensors is critically important to better characterize the underly-
ing degradation process and produce amore accurate prediction
of the Remaining Useful Life (RUL; Liu and Shi (2015)). In this
article, we consider one of the popular data fusion approaches
to construct a composite Health Index (HI) by directly combin-
ing the multiple signals from multiple sensors. Mathematically,

CONTACT Kaibo Liu kliu@wisc.edu
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uiie.

let Li(t ) = [Li,1(t ), . . . , Li,s(t )] ∈ R
1×s be the collected sensor

measurements for unit i at time t , where Li, j(t ) is the sensor
measurement for unit i, sensor j at time t , and s is the number
of sensors. Then, the HI is constructed as hi(t ) = z(Li(t ),w0),
where hi(t ) is the HI for unit i at time t , z(·) is an appropriate
fusion function to combine the multiple signals from multiple
sensors, andw0 is the fusion coefficient. Specifically, wewill esti-
matew0 based on the collected signals of a set of historical units.
Then, we leverage the derived fusion coefficient ŵ to construct
the HIs for in-field units and predict their RULs in real time.
There are several significant reasonswhy theHI-based approach
is of great interest. First, by constructing a one-dimensional
HI, the problem of analyzing the multiple signals from multi-
ple sensors is transformed into analyzing a single sensor sig-
nal (i.e., the HI). As a result, the existing rich literature on the
degradation modeling, prognostics, and maintenance schedul-
ing based on a single sensor signal can be directly applied. Sec-
ond, different degradation models for a single sensor signal can
be incorporated into the HI-based method to adapt to different
situations. Consequently, the HI-based method gains flexibil-
ity and the ability to deal with many practical issues, such as
variations among different units (Liu and Huang, 2016). Third,
the constructed HI provides a continuous visualization of the
degradation progression of a unit, which is easy to understand
and thus highly desired in industrial practice. In contrast, other
data fusion methods (e.g., see Hu et al. (2012) and Tian (2012))
behave like a “black box” that directly produces an output of
the RUL prediction without a clear visualization of the degra-
dation process. For these methods, it would be difficult for prac-
titioners to fully understand the current health status of a unit
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and thus confidently use the predicted RUL to make better
decisions.

Despite the promise of the HI-based approaches, construct-
ing an effective HI is indeed a major challenge. First, although
the goal of constructing the HI is to better characterize the
degradation process, the true degradation status is always
unknown and cannot be directly observed from the multiple
sensor signals. Thus, the construction of the HI is significantly
different from the classic supervised learning problem (Hastie
et al., 2009), where the response variable is directly observ-
able. Likewise, the construction of the HI should be consid-
ered as neither an unsupervised learning problem that contains
no response variable nor a semi-supervised learning problem
(Chapelle et al., 2006), in which the response variable is directly
available for only a fraction of samples. Second, the degrada-
tion process represented by the HI has to comply with the engi-
neering principles that govern the underlying failure mecha-
nism. Specifically, considering that the degradation is inherently
an irreversible process, the degradation path should be mono-
tonic, especially when the degradation is in the form of wear
and cumulative damage (Park and Bae, 2010; Ye and Xie, 2015).
In addition, the degradation process should mirror the phys-
ical fact that a failure occurs once the degradation path of a
unit passes the pre-defined failure threshold (Lu and Meeker,
1993; Gebraeel et al., 2005).We call this kind of problem indirect
supervised learning. Currently, there is no commonly accepted
definition of indirect supervised learning in the literature. Here,
we use the term “indirect supervised learning” to refer to a group
of problems, in which the response variable (i.e., the underlying
degradation status) is not directly observable but information
related to the response variable (i.e., failure events and domain
knowledge about the degradation process) is available, which
thus can be used to indirectly infer the response variable.

In current practice, the HI is mainly constructed by com-
bining the data of a few sensors or Key Performance Indica-
tors based on simplified physical laws and empirical knowledge
(Vaisnys et al., 2006). However, such approaches rely on the spe-
cial skills and experience of personnel and are limited to sys-
tems with simple structures and limited sensor data. Although
some attempts have been recently made to develop techniques
to construct the HI via data-driven approaches (Liu et al., 2013;
Liu and Huang, 2016), these methods are heuristic in nature,
which cannot guarantee that the constructed HI will lead to
an improved prognostic performance. The main reason for this
problem is that these existing HI-based models treat the con-
struction of the HI and the prognosis as two separate tasks.
Specifically, the HI is constructed using unsupervised learning
based on multiple sensor signals and then the prognosis is for-
mulated as a supervised learning problem after theHI is derived.
Therefore, the intrinsic connection between the two tasks is
missing, and the effectiveness of the constructed HI remains
to be tested and verified. Currently, the existing literature still
lacks a solid analytic foundation that supports the HI-based
approaches. In this article, we aim to fill this gap by developing
a novel HI-based method with theoretical justifications.

By combining data fusion methods with the engineering
knowledge extracted from the degradation process, we propose
to minimize the difference between the predicted failure time
and the true failure time of each historical unit. Specifically, our

innovative idea is to formulate the construction of an HI via the
quantile regression technique and then the engineering knowl-
edge on degradation, such as monotonicity and failure thresh-
old, is realized as constraints in the proposed model. Unlike
previous HI-based methods, which contain two separate steps
including an unsupervised learning (i.e., construction of HI)
step and a supervised learning (i.e., prognosis) step, the pro-
posed method integrates the two steps in a unified manner and
formulates the problem of degradation modeling based on mul-
tiple sensor signals as indirect supervised learning.

One of the main contributions of this work is that our pro-
posed method guarantees to derive the optimal combination of
sensor signals (i.e., the estimated fusion coefficient ŵ will con-
verge to the true value w0) and thus it ensures the effective per-
formance of the constructed HI. Currently, there are no other
HI-based approaches that guarantee this desirable property. The
rest of this article is organized as follows. Section 2 reviews some
degradation models that are commonly used to analyze a single
sensor signal and also existing data fusion methods for degra-
dationmodeling and prognostics. Section 3 describes the details
of the proposed method and investigates its asymptotic proper-
ties. Section 4 and Section 5 evaluate the proposedmethod using
a number of simulation studies and a case study that involves
the degradation of aircraft engines, respectively. Section 6 draws
conclusions and discusses future work.

2. Literature review

In this section, we review the related works in the literature.
Since the constructed HI can be viewed as a new single sen-
sor signal, we first provide a quick review on the degradation
models for a single sensor signal. Then we discuss the existing
data fusion methods for degradation modeling and prognostics
of multiple sensor signals.

2.1. Degradationmodels for a single sensor signal

Degradation models for a single sensor signal can be classified
into three broad categories: general pathmodels, stochastic pro-
cess models, and other models. Recent reviews of these degra-
dation models can be found in Si et al. (2011) and Ye and Xie
(2015).

The general path model was first introduced by Lu and
Meeker (1993), where the sensor signal was modeled by a para-
metric degradation path plus a measurement error with fixed-
effect and random-effect parameters. Gebraeel et al. (2005)
extended the general path model and proposed to update the
posterior distribution of the random-effect parameters based on
in situ signal measurements, which can be further used to pre-
dict the RUL of each individual unit. Some other extensions
include exploration of different distributions of the random-
effect parameters (Yu, 2006; Bae et al., 2007), investigation of dif-
ferent parametric and nonparametric forms of the degradation
path (Bae and Kvam, 2004; Zhou, Serban, Gebraeel, and Muller,
2014), and incorporation of dynamic covariates into the general
path model (Hong et al., 2015).

The uncertainty of general path models originates from the
random-effect parameters andmeasurement errors. Thus, given
the random-effect parameters, the underlying degradation path
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is assumed to be deterministic. On the other hand, stochastic
process models assume the degradation path to be a stochastic
process, such as Wiener process (Whitmore and Schenkelberg,
1997; Si et al., 2012; Ye et al., 2013; Zhai and Ye, 2017), gamma
process (Bagdonavicius and Nikulin, 2001; Lawless and Crow-
der, 2004), and inverse Gaussian process (Wang and Xu, 2010;
Ye and Chen, 2014). These models are often used to account for
the influence of unobserved environmental factors on the degra-
dation path.

In addition to general path models and stochastic pro-
cess models, other models such as Proportional Hazard Model
(PHM) and state-space models have been developed for mod-
eling of a single degradation signal. For example, Zhou et al.
(2014) investigated the integration of the general path model
and PHM to address hard failures of critical units. Christer et al.
(1997) applied a Kalman filter to the prognosis andmaintenance
of furnaces.

One common assumption of the abovemodels is that the sin-
gle sensor signal can directly reflect the underlying degradation
path; i.e., the single sensor signal is either directly treated as the
degradation path or assumed to be the degradation path plus a
measurement error. However, this assumption may not be true
in practical applications, especially for complex systems. In this
case,multiple sensors can be used to collect data related to differ-
ent characteristics of the degradation process and provide more
accurate estimation on the degradation status.

2.2. Existing data fusionmethods for degradation
modeling and prognostics

As previously mentioned, data fusion is critical for dealing with
multiple sensor signals. In the literature, data fusionmethods for
degradation modeling and prognostics can be mainly classified
into three categories based on the level at which the fusion oper-
ation is performed (Hall and Llinas, 1997; Jardine et al., 2006):
decision-level fusion, feature-level fusion, and data-level fusion.

Decision-level fusion methods combine different diagnos-
tic or prognostic results. For example, Hu et al. (2012)
aggregated the RUL predictions from multiple machine learn-
ing algorithms by weighted average, where the weights were
determined by cross-validation. Baraldi et al. (2012) also used
a weighted average to combine prognostic results, but the
weights were dynamically derived using a Kalman filter. How-
ever, decision-level fusion methods are heuristic and can only
obtain a point estimator of the RUL for a unit in general.

The other two categories, feature-level fusion and data-level
fusion, combine the extracted features and the raw sensor sig-
nals, respectively. Themethods of these two categories are gener-
ally interchangeable if the extracted features are time-series and
can be treated as sensor signals. For example, machine learn-
ing algorithms, such as neural networks, are commonly used
in the literature and directly produce an output of the RUL
prediction with the inputs of the most recent features or sig-
nal measurements (Tian, 2012; Loutas et al., 2013). However,
these methods fail to realize the unique characteristics of the
degradation process. State-space models have also been consid-
ered to directly process multiple sensor signals (Xu et al., 2008;
Saha et al., 2009). However, state-space models often assume

that future degradation depends only on the current degra-
dation status instead of the past—i.e., following the Markov
property—which may not be valid in practice (Bae and Kvam,
2004; Chen and Tsui, 2013). Also, it is nontrivial to incorpo-
rate variations among different units into state-space models.
Recently, Fang et al. (2017) proposed to use Functional Principal
Component Analysis (FPCA) to extract features from multiple
sensor signals for RUL prediction. Unfortunately, the extracted
features are difficult to interpret in practice, and their relations
to the underlying degradation status are unknown.

Another type of feature-level or data-level fusion method is
to construct a one-dimensional HI for characterizing the under-
lying degradation process, which is the focus of this study. As we
introduced in Section 1, themain task ofHI-basedmethods is to
estimate the fusion functionwith the corresponding fusion coef-
ficient. One simple approach is to explicitly express the under-
lying degradation process as a deterministic function of time
(Wang et al., 2008; Yang et al., 2016). Then the fusion coefficient
can be estimated by a regression of themultiple sensormeasure-
ments against the function values. However, this method over-
simplifies the problem and cannot capture the randomness of
each unit. To address this issue, Liu et al. (2013), Liu and Huang
(2016), and Liu et al. (2017) proposed to construct the HI by
optimizing the desired properties such as a small model fitting
error and small variation of failure threshold. However, these
methods are still heuristic and lack theoretical justifications. In
other words, the constructed HI is not guaranteed to have a bet-
ter prognostic performance than each single sensor signal.

To summarize, different techniques have been attempted to
model multiple sensor signals in degradation analysis and prog-
nostics, and these techniques are commonly formulated into two
steps (see, for example, Tian (2012); Liu et al. (2013); Loutas
et al. (2013); Liu and Huang (2016); Fang et al. (2017); and Liu
et al. (2017)). The first step involves feature extraction orHI con-
struction. As reviewed above, since there is no response vari-
able, various unsupervised learning techniques—e.g., FPCA in
Fang et al. (2017) and optimizing the desired properties of the
HI in Liu et al. (2017)—are employed in this step. In the second
step, the relationship of the output of the first step (treated as
the known predictor) to the RUL (treated as the response vari-
able) is derived, which can be regarded as supervised learning.
The two steps are considered separately, which thus limits the
performance of these methods.

Currently, the existing literature on data fusion models still
lacks an effective method tailored for the degradation model-
ing of multiple sensor signals, which is theoretically justified to
ensure the prognostic performance as well as capable to deal
with practical issues in degradation applications.

3. Methodology

In this article, we aim to propose a new HI-based method with
theoretical justifications. Unlike existing data fusion methods
for degradation modeling that consist of two separate steps,
the proposed method directly relates the multiple sensor sig-
nals and the RUL using indirect supervised learning. With the
proposed method, we are able to combine data fusion tech-
niques with engineering knowledge to better satisfy the needs of
degradation modeling and prognostics. Specifically, we employ
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quantile regression to minimize the difference between the pre-
dicted and actual failure times for historical units and then engi-
neering principles extracted from the degradation process are
formulated as constraints. We can further show that the esti-
mated fusion coefficient ŵ will converge to the true value w0.
In the following, we first present a formal definition of the HI in
Section 3.1 and then specify the proposed model in Section 3.2.
Next, two general cases when implementing ourmethod are dis-
cussed in Section 3.3 and Section 3.4, depending on whether
some parameters are known or not. Section 3.5 investigates
the asymptotic behavior of the proposed method. Section 3.6
describes an iterative procedure to solve the optimization prob-
lem involved and Section 3.7 discusses RUL prediction and tun-
ing parameters.

3.1. Definition of HI

Before describing the proposed method, it is important to first
present a formal definition of the HI. Previous studies simply
considered the single signal constructed from the combination
of multiple sensor signals as the HI (Liu et al., 2013; Liu et al.,
2017).However, this definition is unclear, as there aremanyways
to combinemultiple sensor signals and, by this definition, theHI
is not necessarily related to the underlying degradation process.
Therefore, a formal definition of the HI has to be provided first
to highlight the basic concept of the HI-based methods.

Following the common settings in the literature (Lu and
Meeker, 1993; Gebraeel et al., 2005), we define the failure time
of unit i as the time that the underlying degradation process
η(t;�i,�) first crosses the failure threshold l:

Ti = argmin
t

η(t;�i,�) ≥ l, (1)

where Ti is the failure time for unit i, �i and � are random-
effect and fixed-effect parameters respectively, and the degrada-
tion process η(·) can take any form, such as the general path
model and Wiener process model mentioned in Section 2.1.

The main idea of HI-based methods is to unravel the under-
lying degradation process via the combination of multiple
sensor signals. Specifically, we assume the underlying degrada-
tion process can be derived from an appropriate fusion function
based on multiple sensor signals with the contamination of
white noise:

η(t;�i,�) = z(Li(t ),w0) − εi(t ). (2)

Here εi(t ) ∼ N(0, σ 2
0 ) is the independent Gaussian noise with

variance σ 2
0 . A special fusion function z(Li(t ),w0) = Li, j(t )

selects one signal from the multiple sensor signals, which indi-
cates that there exists a single sensor signal directly reflecting the
underlying degradation path. This represents the case where the
degradation model for a single signal is applied. From this point
of view, the restrictive assumption of degradation models for a
single signal is relaxed via the fusion function in our method.

Then, we present a formal definition of HI as follows:

Definition 1. The HI is a combination of sensor signals that
characterizes the underlying degradation process

hi(t ) = z(Li(t ),w0), (3)

where hi(t ) is the HI for unit i at time t . Based on Equations (2)
and (3), we obtain

hi(t ) = η(t;�i,�) + εi(t ).

3.2. Model formulation

Although using the proposedmethodmakes it possible to incor-
porate a variety of degradation models for a single signal as
reviewed in Section 2.1, we focus on the general path model for
the underlying degradation process in this article. In addition, to
highlight our main ideas, we consider the following parametric
form of the degradation model:

η(t;�i,�) = ψ(t )�i, (4)

whereψ(t ) ∈ R
1×p contains the time covariates with each entry

to be a smooth function of t (e.g., forψ(t ) = [1, t, . . . , t p−1], we
have a polynomial model), and �i is a p-dimensional random-
effect parameter. In this study, we follow the existing HI-based
literature, such as Liu et al. (2017), and assume that �i follows a
multivariate normal distribution�i ∼ Np(μ0,�0).Wewill con-
sider the relaxation of this normal distribution assumption in
a future study. The general path model in Equation (4) is flex-
ible in describing various degradation processes and has been
widely utilized in the literature (Lu et al., 1997; Gebraeel, 2006;
Liu et al., 2013; Zhou et al., 2014). The advantage of thismodel is
that conditioning on the collected sensor signals, the analytical
expression for the posterior distribution of �i and the distribu-
tion of failure time FTi (t ) can be derived. In practice, the form
of ψ(t ) can be determined from domain knowledge or histori-
cal data. When such knowledge is not available, nonparametric
models can be adopted where ψ(t ) is composed of a series of
functional basis (Zhou, Serban, and Gebraeel, 2014; Zhou, Ser-
ban, Gebraeel, and Muller, 2014; Hong et al., 2015).

In addition to the degradation model, we need to specify the
form of the fusion function z(·). Without loss of generality, in
this article, we focus on the linear fusion function and will con-
sider the extension to nonlinear fusion functions in a future
study:

z(Li(t ),w0) = Li(t )w0.

In fact, a variety of nonlinear fusion functions can be lin-
earized by creating artificial sensor signals. For example, if the
fusion function has the form

z(Li(t ),w0) =
K∑

k=1

uk(Li(t ))wk, (5)

where w0 = (w1, . . . ,wK )T ∈ R
K×1, and uk(·) is a function

of Li(t ), then it is equivalent to z(L′
i(t ),w0) = L′

i(t )w0, where
L′
i(t ) = [u1(Li(t )), . . . , uK (Li(t ))] ∈ R

1×K . In this way, a more
general fusion function can be approximated in the form
of Equation (5) using a set of functional basis functions
{uk(·), k = 1, . . . ,K}.

As a result, we have the following relation among the HIs
hi(t ), the multiple sensor signals Li(t ), and the underlying
degradation process

hi(t ) = Li(t )w0 = ψ(t )�i + εi(t ). (6)
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If we let hi = [hi(ti,1), . . . , hi(ti,ni )]T ∈ R
ni×1 and

Li =

⎡
⎢⎣
Li(ti,1)

...
Li(ti,ni )

⎤
⎥⎦ ∈ R

ni×s

be the HI and all available multiple sensor signals for historical
unit i, respectively, and let

�i =

⎡
⎢⎣
ψ(ti,1)

...
ψ(ti,ni )

⎤
⎥⎦ ∈ R

ni×p

be the design matrix, and εi = [εi(ti,1), . . . , εi(ti,ni )]T ∈ R
ni×1,

then Equation (6) can be written in matrix form as

hi = Liw0 = �i�i + εi. (7)

The parameters related to this model include the fusion coef-
ficient w0, the failure threshold l, and the set of parameters
�0 = {μ0,�0, σ

2
0 }. There are two general cases that we need

to consider depending on whether �0 and l are known or not
in practice. Next, we discuss the parameter estimation for both
cases in detail.

3.3. Case I:�0 and l are known

To begin with, we start from the case where �0 and the failure
threshold l are known. Accordingly, the only unknown param-
eter is the fusion coefficient w0. To predict the failure time of
unit i, we adopt the Bayesian updating approach proposed by
Gebraeel et al. (2005). In particular, conditioning on the con-
structed HI hi = Liw0, the posterior distribution of �i is

P(�i|Liw0) ∝ P(Liw0|�i)P(�i).

According to Equation (7), the conditional distribution
Liw0|�i ∼ Nni (�i�i, σ

2
0 Ini×ni ), where Ini×ni ∈ R

ni×ni is the
identity matrix. Recall the random-effect parameter �i ∼
Np(μ0,�0). Let X i,1 = �T

i �i ∈ R
p×p,X i,2 = �T

i Li ∈ R
p×s,

and X i = [X i,1,X i,2], then we can obtain that the posterior
�i|Liw0 is normally distributed:

�i|Liw0 ∼ Np(μi(X i,w0;�0),�i(X i;�0)),

where

μi(X i, w0;�0) =
(
�T

i �i

σ 2
0

+ �−1
0

)−1 (
�T

i Liw0

σ 2
0

+ �−1
0 μ0

)

=
(
X i,1

σ 2
0

+�−1
0

)−1 (
X i,2w0

σ 2
0

+�−1
0 μ0

)
, (8)

�i(X i;�0) =
(
�T

i �i

σ 2
0

+ �−1
0

)−1

=
(
X i,1

σ 2
0

+ �−1
0

)−1

. (9)

Thus, the posterior ψ(t )�i|Liw0 also follows a normal
distribution:

ψ(t )�i|Liw0

∼ N(ψ(t )μi(X i,w0;�0),ψ(t )�i(X i;�0)ψ(t )T ). (10)

According to Equation (1), the Cumulative Distribution
Function (CDF) of the failure time Ti is

FTi (t|Liw0) = P(Ti ≤ t|Liw0) = P(ψ(t )�i ≥ l|Liw0)

= �

⎛
⎝ψ(t )μi(X i,w0;�0) − l√

ψ(t )�i(X i;�0)ψ(t )T

⎞
⎠

= �(g(t,X i,w0;�0)). (11)

Here � is the CDF of a standard normal distribution. Since the
distribution is skewed, we follow the existing literature and con-
sider themedian value T̂i as the estimated failure time (Gebraeel
et al., 2005). This means that T̂i satisfies FTi (T̂i) = 0.5 and thus

ψ(T̂i)μi(X i,w0;�0) − l = 0. (12)

Please note that in the procedure described above, we utilize
all available sensormeasurements of each historical unit to accu-
rately estimate the failure time. Let r(X i,w0;�0) = T̂i be the
real positive root of the equation ψ(t )μi(X i,w0;�0) − l = 0.
Then, we propose to estimate w0 by using quantile regression
to minimize the difference between the estimated failure time T̂i
and the true failure time τi for allm historical units:

ŵ = argmin
w

m∑
i=1

|r(X i,w;�0) − τi|, (13)

s.t. w ∈ W�0 .

In this formulation, we constrain w to be within the set
W�0 , which is required to ensure that the estimated process
ψ(t )μi(X i,w;�0) complies with the engineering knowledge
extracted from the underlying degradation process. Specifically,
we consider the following constraints.

Constraint 1: ||w|| ≤ C0 , where ||w|| is the l2-norm of ||w||
and C0 is a positive number. This constraint ensures that W�0 is
bounded, based on the fact that w should be finite in practice.

Constraint 2: ψ(0)μi(X i,w;�0) ≤ l −C1, where C1 is a posi-
tive number. This constraint ensures that at time 0, the degrada-
tion process is strictly below the failure threshold l.

Constraint 3: ψ̇(t )μi(X i,w;�0) ≥ C2, where ψ̇(t ) = ∂ψ

(t )/∂t and C2 is a positive number. This constraint ensures that
the degradation process is strictly increasing. �

Due to the | · | operator, the objective function of Equation
13 is not smooth, which increases the complexity in numeri-
cally solving the problem. A common practice to address this
issue is to transform the objective function to a smooth one with
additional constraints. Specifically, we can transform Equation
13 into

ŵ = argmin
w

m∑
i=1

(ξi,1 + ξi,2),

s.t. r(X i,w;�0) − τi = ξi,1 − ξi,2, ξi,1 ≥ 0, ξi,2 ≥ 0, w ∈ W�0 .
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Then a variety of algorithms, such as the interior point algo-
rithm, and sequential quadratic programming can be imple-
mented to solve this constrained nonlinear optimization
problem (Nocedal and Wright, 2006).

3.4. Case II:�0 and l are unknown

In practice, the parameters �0 of the general path model and
the failure threshold l are often unknown and thus we need to
estimate �0, l,w0 simultaneously from the historical units. In
this subsection, we will discuss how to address this challenge by
extending the model of Case I and incorporating the relations
between�0 and w0.

First, we observe that if wemultiplyw,μ, l by the same scalar
γ > 0 and multiply�, σ 2 by γ 2, then the resulting r(X i,w;�)

remains unchanged, where � = {μ,�, σ 2}. In other words,
w,μ, l,�, σ 2 and γw, γμ, γ l, γ 2�, γ 2σ 2 have the sameobjec-
tive function value

∑m
i=1 |r(X i,w;�) − τi| and thus the optimal

solution is not unique. To avoid this issue, we can set l to be any
positive number—e.g., l = 1—and then we estimate�0 and w0
simultaneously given l. Guided by Lu and Meeker (1993), the
relation between�0 and w0 can be formulated as follows.

Given w0, we estimate the true value of the random-effect
parameter �i as

�̂i(w0) = (
�T

i �i
)−1
�T

i Liw0 = X−1
i,1X i,2w0.

According to Equation (7), Liw0 has a normal distribu-
tion with mean E[Liw0] = �iμ0 and variance Var[Liw0] =
�i�0�

T
i + σ 2

0 I and thus the distribution of �̂i(w0) is also nor-
mal with mean and variance as follows:

E[�̂i(w0)] = (
�T

i �i
)−1
�T

i E[Liw0] = μ0,

Var[�̂i(w0)] = (
�T

i �i
)−1
�T

i Var[Liw0]�i
(
�T

i �i
)−1

= �0 + σ 2
0
(
�T

i �i
)−1

.

Therefore, the unbiased estimators for μ0, σ
2
0 , and �0 are

μ̂(w0) = 1
m

m∑
i=1

�̂i(w0), (14)

σ̂ 2(w0) = 1
m

m∑
i=1

(Liw0 −�i�̂i(w0))
T
(Liw0 −�i�̂i(w0))

ni − p
,

(15)

�̂(w0) = 1
m − 1

m∑
i=1

(�̂i(w0) − μ̂(w0))(�̂i(w0) − μ̂(w0))
T

− 1
m

m∑
i=1

(Liw0 −�i�̂i(w0))
T
(Liw0 −�i�̂i(w0))

ni − p

× (
�T

i �i
)−1

. (16)

If �0 is unknown, we can estimate �0 by �̂(w0) =
{μ̂(w0), �̂(w0), σ̂

2(w0)} based onw0, andwe can prove the fol-
lowing proposition (see Appendix for details).

Proposition 1. As m → ∞, the estimated values �̂(w0) con-
verge to the true values�0.

Therefore, Equation (11) can also be regarded as the true
CDF of the failure time Ti with �0 replaced by �̂(w0) when m
is large. To address the challenge that w0 is also unknown, we
formulate �̂(w) as a function of w and estimate w by solving
the following quantile regression problem with constraints

ŵ = argmin
w

m∑
i=1

|r(X i,w; �̂(w)) − τi| (17)

s.t. w ∈ W
�̂(w)

.

In this formulation, we require �̂(w) to be well conditioned,
since we need to calculate the inverse as in Equation 8 with �0

replaced by �̂(w). Other constraints are similar to Case I with
�0 replaced by �̂(w). Accordingly, we list the constraints as
follows:

Constraint 1: ||w|| ≤ C0 .

Constraint 2: ψ(0)μi(X i,w; �̂(w)) ≤ l −C1.

Constraint 3: ψ̇(t )μi(X i,w; �̂(w)) ≥ C2.

Constraint 4: �̂(w) is well conditioned.

Solving this optimization problem, however, is challenging.
One of the reasons is that the constraints are highly nonlinear.
In Section 3.6, we propose an iterative procedure to search for
the optimal solution for Case II.

3.5. Asymptotic property

In this subsection, we will focus on studying the asymptotic
property of ŵ that is estimated by using the proposedmethod. In
particular, we can show that the estimated ŵ indeed converges
to the true w0:

Theorem 1. If w0 is unique and is an inner point of the search
spaceW , then for both Equation (13) in Case I and Equation (17)
in Case II, there exists positive definite matrices G0 and G1 such
that

√
m(ŵ − w0) → Ns

(
0,

1
4
G−1
1 G0G−1

1

)
(18)

as m → ∞.

The proof of the theorem is based on the convergence the-
ory of nonlinear quantile regression (see Oberhofer (1982) and
Koenker (2005 Chap. 4.4)). The details of the proof are omit-
ted here due to space limitations. We will further demonstrate
the convergence of the estimated ŵ in the simulation study in
Section 4.

3.6. An iterative procedure for case II

As previously mentioned, solving the optimization problem in
Equation (17) for Case II is challenging due to the highly non-
linear constraints. In this section, we propose an iterative proce-
dure to search for the optimal solution in Case II when the prior
parameter�0 is unknown. The iterative procedure is described
as follows.
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Iterative Procedure for Solving Case II
Input: initial guess w(0), failure threshold l, parameters C0,
C1,C2, sensor signals Li, failure time τi for all historical units
(i = 1, . . . ,m), and maximum number of iterations kmax.

Output: estimated fusion coefficient ŵ.
1: Procedure:
2: Set k = 0.
3: do
4: Calculate�(k+1) = �̂(w(k)) from (14)–(16) with

w0 replaced by w(k). If �̂(w(k)) is ill conditioned, let
�̂(w(k)) = �̂(w(k)) + γ I p×p, where γ is a small positive
scalar such that �̂(w(k)) is well conditioned.

5: If w(k) ∈ W�(k+1) , calculate

w(k+1) = argmin
w

m∑
i=1

|r(X i,w;�(k+1)) − τi|

s.t. w ∈ W�(k+1) . (19)

Otherwise, generate w(k+1) such that it satisfies the constraint
w(k+1) ∈ W

�̂(w(k+1) )
.

6: Set k = k + 1
7: until k = kmax or w(k) converges
8: Set ŵ = w(k).

The idea behind the iterative procedure is to iteratively
approximate �0 by �(k+1). If �(k+1) is a good approximation,
then the corresponding w(k+1) calculated in Equation (19) will
be close to ŵ estimated fromEquation (13); i.e., a consistent esti-
mator ofw0 according to Theorem 1. There are two assumptions
associated with the iterative procedure. The first assumption
is that there exists a w∗ within a small neighborhood N1(w0)

of w0 such that w∗ = argminw

∑m
i=1 |r(X i,w; �̂(w∗)) − τi|

where w ∈ W
�̂(w∗)

. In other words, if we use the prior param-

eters �̂(w∗) estimated based on w∗ to replace �0 in Equa-
tion (13), we will obtain w∗ again. We call this property of w∗

self-producing. If m → ∞, we have shown that �̂(w0) → �0
and ŵ → w0 where ŵ is estimated by Equation (13) and thus
w0 is self-producing by neglecting the (possible) small difference
between ŵ and w0. Practically, m is finite and, in such a case,
we assume another point w∗ ∈ N1(w0) to be self-producing,
which is a necessary condition for the iterative procedure to con-
verge tow∗. Asm increases, the neighborhoodN1(w0) becomes
smaller and w∗ becomes closer to w0.

The second assumption is that for w(k) within a neighbor-
hood N2(w

∗) of w∗, the updated w(k+1) after one iteration
gets closer to w∗ from w(k). This assumption relies on the
variance of the estimated prior parameters and the sensitivity of
Equation (19) to the mis-specification of the prior parameters.
Specifically, if m is large, the variance of the estimated prior
parameter �(k+1) = �̂(w(k)) is small. Thus, if w(k) ∈ N2(w

∗),
the difference between �(k+1) and �̂(w∗) is bounded. If Equa-
tion (19) is not sensitive to the mis-specification of the prior
parameters, then the resulting w(k+1) will be closer to w∗. This
conclusion requires ni to be relatively large; i.e., a large number
of historical observations are available for unit i. This is often
valid in practice, due to the rapid development of sensor and
cloud technologies. In this way, as ni → ∞, the posterior mean

μi(X i,w;�) → �̂(w), which only has a small dependence on
the prior parameter �. As a result, the estimated failure time
r(X i,w;�) will be insensitive to the value of � but will be
sensitive to the value of w, and then our second assumption
will be valid. To summarize, with a large m and a large ni, the
iterative procedure is expected to deliver a better convergence
performance and a more accurate estimation of w0. This point
will be further investigated in Sections 4.1 and 4.2.

Consequently, an important issue here is that the initial guess
w(0) should be close to w∗. Practically, there are several options
for choosing w(0). For example, we can use the estimation of
w0 from existing data-level fusion methods (Liu and Huang,
2016; Liu et al., 2017) as an initial guess w(0). Another option
is to calculate w(0) by solving Equation (19) given k = 0 and
noninformative prior parameters [�(1)]−1 = 0, in which case
μi(X i,w;�(1)) = �̂(w) does not depend on �(1). Meanwhile,
to ensure the performance of the proposed iterative procedure
in practice, we can also randomly generate a number of w(0) ∈
W�(0) , repeat the iterative procedure multiple times with differ-
ent initial guesses of w(0), and finally select the best solution
based on the values of the objective function.

3.7. RUL prediction and discussion

In this subsection, we discuss how to predict the RUL based on
the estimated ŵ for in-field unit i when this unit has partially
degraded but has not yet failed. The procedure is exactly the
same as Equations (8) to (11) except that w0 is replaced by ŵ.
In particular, the CDF of the failure time can be updated in real
time given that the RUL > 0. For example, in Case I, the CDF
can be calculated as

FTi (t|Ti>ti,n) = �(g(t,X i, ŵ;�0)) − �(g(ti,ni,X i, ŵ;�0))

1 − �(g(ti,ni,X i, ŵ;�0))
.

Here ni is the number of available observations Li(t ) for in-field
unit i, and ti,ni is the time when the last measurement was col-
lected. Then the predicted failure time T̂i can be calculated as
the median value of the updated CDF as in Equation (12).

The prognostic performance of our proposed method can be
well explained by the similarity of the procedures in parame-
ter estimation and RUL prediction. In parameter estimation, we
choose ŵ to minimize the prediction error in historical units
and thus if historical units and in-field units are drawn from
the same population, the prognostic performance for the in-field
units should also be satisfactory. This is one of the main differ-
ences between our proposed method and existing data fusion
approaches.

In the model formulation, there are several parameters
C0,C1, and C2. A large C0 and a small C1 and C2 will enlarge
the search space W�0 or W�̂(w)

and thus w0 is more likely to
be within the search space. On the other hand, a small C0 and
a large C1 and C2 will reduce the search space and thus likely
decrease the computational cost. Therefore, the setting of these
parameters should be based on the practical application. Ifw0 is
known to be within a smaller search space, then a smallC0 and a
largeC1 andC2 are preferred; otherwise, the search space should
be large enough to avoid excluding w0.
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4. Simulation study

We conduct a number of simulation studies to evaluate the esti-
mation and prognostic performance of our proposed method
for both Cases I and II. In particular, we consider the following
three scenarios: (i) the ideal scenario where all assumptions are
satisfied; (ii) the available sensor measurements are sparse; and
(iii) the degradation path model is mis-specified.

4.1. Ideal scenario

First, we consider the ideal scenario when all assumptions are
satisfied. Specifically, we aim to verify the asymptotic property
in Sections 3.5 using a simulated dataset.

In this simulation, we randomly generate 1000 units with a
linear degradation path; i.e., the underlying degradation process
for each unit is

η(t;�i,�) = 
i,0 + 
i,1t,

where the random-effect parameter �i of unit i follows the prior
distribution

�i =
(


i,0

i,1

)
∼ N2

((−1
2

)
,

(
100 1
1 0.5

))
.

Note that the probability of 
i,1 ≤ 0 is less than 10−4, which
is thus negligible. If any �i with 
i,1 ≤ 0 is generated, we reject
the sample and generate a new one to ensure that the under-
lying degradation process of any unit is increasing. The failure
threshold is set to be l = 400 and we record the true failure time
as τi according to Equation (1). The underlying true HI is gen-
erated by adding a random noise to the underlying degradation
process:

hi(t ) = η(t;�i,�) + εi(t ) = 
i,0 + 
i,1t + εi(t ),

where εi(t ) ∼ N(0, 202). Furthermore, we consider
four sensors with the true value of fusion coefficient
w0 = (w1,w2,w3,w4) = (0.6, 0.2,−0.5, 0)T . Signal 1 is
randomly generated by

Li,1(t ) = U (1)
i,1

√
t −U (2)

i,1 sin(0.05t ) + εi,1(t ), (20)

and Signal 2 is randomly generated by

Li,2(t ) = U (1)
i,2 t +U (2)

i,2 sin(0.1t ) + εi,2(t ). (21)

Signal 3 is calculated based onw0 using theHI hi(t ) and the first
two signals:

Li,3(t ) = (hi(t ) − w1Li,1(t ) − w2Li,2(t ))/w3. (22)

Since w4 = 0, we are considering the case that Signal 4 is not
related to the underlying degradation process, which is likely to
happen in practice. Signal 4 is randomly generated by

Li,4(t ) = U (1)
i,4 t +U (2)

i,4 + εi,4(t ). (23)

In Equations (20) to (23), U (1)
i,1 ,U (2)

i,1 ,U (2)
i,2 ,U (2)

i,4 ∼
Uniform(0, 30), U (1)

i,2 ,U (1)
i,4 ∼ Uniform(0, 2), and

εi,1(t ), εi,2(t ), εi,4(t ) ∼ N(0, 202). All of the signals are sam-
pled at time t = 1, 2, . . . , ni, where ni = �τi is the largest
integer less or equal to τi. Figure 1 shows the true HI and
four signals for three randomly generated units. In Figure 1,
significant differences are observed among these units.

To verify the convergence property of the proposed method,
we randomly select m historical units and estimate the fusion
coefficient w0 in both Case I (�0 known) and Case II (�0
unknown) based on the sensor signals and failure time while
the true HI is regarded as unknown. We repeat the above pro-
cedure 50 times to obtain the mean and standard deviation of
our estimations. Figure 2 shows the results for Case I, where the
x-axis is the number of historical units sampled for estimation,
the solid horizontal lines represent the true value for each entry
of w0, and the solid and dashed curves represent the mean and
one standard deviation of the estimated values, respectively. As
we can see, the estimation becomes more accurate with more
historical units, since there is more information available that
can reduce the variance of the estimated fusion coefficient as
implied by Equation (18). Moreover, the performance of our
proposedmethod is satisfactory, as all true values are within one
standard deviation from the mean of the estimated values.

For Case II, the iterative procedure proposed in Sections 3.6
is used to estimate w0. For each random sample set of historical

Figure . True HI and four signals for three randomly generated units.
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Figure . Estimation results for Case I. The solid line and dashed lines are the mean and one standard deviation for each entry of ŵ, respectively. The solid horizontal line
is the true value ofw0 .

units, we repeat the iterative procedure 50 times with 50 differ-
ent initial guesses of w(0). The first initial guess is obtained by
solving Equation (19) given k = 0 and noninformative prior
parameters [�(1)]−1 = 0, and the remaining 49 initial guesses
are randomly generated and satisfy the constraintw(0) ∈ W�(0) .
We call the first initial guess the derived initial guess and the
remaining 49 as random initial guess. The final estimation is
obtained by selecting the optimal solution with the minimum
objective value among the 50 repetitions. The results of Case
II are shown in Figure 3. Similar to Case I, the horizontal lines
represent the true value for each entry of w0, and the solid and
dashed curves are the mean and one standard deviation of the
estimations, respectively. As we can see from this figure, the

performance of our proposedmethod is also satisfactory inCase
II. The results of Figures 2 and 3 further validate the benefit
of indirect supervised learning, as in our proposed method the
estimation converges to the true value.On the contrary, for exist-
ing data fusionmethods that formulate the problem in two steps,
there is no guarantee of such a convergence.

We are also interested in understanding the convergence of
the iterative procedure. Specifically, we want to answer (i) how
many repetitions does the iterative procedure fail to converge;
and (ii) how many iterations have to be performed for the itera-
tive procedure to converge. Figure 4 illustrates the proportion
of repetitions that the iterative procedure with a random ini-
tial guess w(0) fails to converge. Generally, the proportion of all

Figure . Estimation results for Case II. The solid lines and dashed lines are the mean and one standard deviation for each entry of ŵ, respectively. The solid horizontal line
is the true value ofw0 .
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Figure. Proportionof the repetitionsof the iterativeprocedurewith random initial
guesses that fail to converge.

Figure . The % quantile of the number of iterations it takes the iterative proce-
dure with either a random or a derived initial guess to converge.

repetitions failing to converge decreases as more historical units
are available, which agrees with our expectation as discussed in
Sections 3.6. Evenwith only six historical units, less than 1.5% of
the repetitions fail to converge. Moreover, note that in Figure 4,
the initial guesses of w(0) in these repetitions are all randomly
generated. In fact, in this study, we observe that the repetitions
with derived initial guesses all converge, indicating that a good
initial guess can increase the probability of convergence for the
iterative procedure.

Figure 5 shows the 90% quantile of the number of itera-
tions that the iterative procedure with random or derived initial

guesses takes to converge. With as few as five historical units,
90% of repetitions of the iterative procedure converge within
nine iterations, indicating that the iterative procedure is able to
quickly converge. Furthermore, the derived initial guesses are
observed to be a little better than the random initial guesses, with
one or two fewer iterations.

4.2. Sensitivity to sparse data

The second scenario considered is sparse data, the case where
the number of available sensor observations for each unit is
small. As discussed in Sections 3.6, the iterative procedure
for Case II performs better with more sensor observations for
each unit. However, in practice, there may be only sparse data
available due to missing data or limited resources. Thus, it is
necessary to understand the level of the required number of
sensor observations to ensure a satisfactory performance for
the iterative procedure. In this simulation, we use the same
dataset as generated in Sections 4.1 and randomly choose 10
historical units as the training set. Then for each unit, we ran-
domly sample a number of sensor observations Li(t ) at dif-
ferent t . Our proposed method is used to estimate the fusion
coefficient w0 based on the selected sensor observations. By
changing the number of selected sensor observations for each
unit, we are able to assess our proposed method with differ-
ent levels of data availability. The procedure described above
is repeated 50 times and the results for Case II are shown in
Figure 6, where the x-axis represents the number of available
observations for each historical unit, the solid horizontal lines
denote the true values for each entry of w0, and the solid and
dashed curves are the mean and one standard deviation of the
estimation, respectively. The results obtained for Case I are
very similar and thus not shown here. It is clear that the esti-
mation becomes more accurate as more observations become
available.

Figure . Estimation results with sparse data for Case II. The solid lines and dashed curves are the mean and one standard deviation for each entry of the estimated w0 ,
respectively. The solid horizontal line is the true value ofw0 .
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Figure . Proportion of the repetitions of the iterative procedurewith random initial
guesses that fail to converge.

In addition to the estimation performance, we are interested
in the convergence of the iterative procedure with sparse data.
Figure 7 shows the proportion of repetitions that fail to con-
verge for the iterative procedure with random initial guesses.
As Figure 7 shows, even with only eight observations per unit,
the proportion of repetitions that fail to converge is only around
1.4%. Figure 8 shows the 90% quantile of the number of itera-
tions that the iterative procedure with random or derived ini-
tial guesses takes to converge. The repetitions with random
and derived initial guesses are close in the number of itera-
tions. Furthermore, with only eight observations per unit, 90%
of the repetitions converge within 13 iterations. Figures 7 and
8 show that the iterative procedure is able to converge quickly
with only a small or moderate number of available sensor
observations.

4.3. Sensitivity tomis-specification of the general path
model

The last scenario we consider concerns the mis-specification of
the general pathmodel. In Sections 3.2, we assumed that the true
degradation path model was known. However, in some appli-
cations, the general path model may be mis-specified, due to
the lack of prior knowledge and historical data. If this happens,
our proposed method is not guaranteed to converge to the true
fusion coefficient. In this simulation, we focus on the prognos-
tic performance of the constructed HI when the general path
model is mis-specified. Specifically, when generating the simu-
lated dataset, we set the underlying degradation path to be

η(t;�i,�) = 
i,0 + 
i,1t1.6,

Figure . The % quantile of the number of iterations it takes the iterative proce-
dure with either a random or a derived initial guess to converge.

Figure . Average prediction error with different proportions of available
measurements.

but when estimating the fusion coefficient and predicting the
RUL, we still assume the underlying degradation path to be lin-
ear. Specifically, we randomly draw 50 units as the training set to
estimate the optimal fusion coefficient. Then we randomly draw
another 50 units as the testing set. The sensor signals in the test-
ing set are truncated before the actual failure time. Based on the
constructed HI for the testing set, we predict the RUL for each
testing unit and compare with the actual RUL. For testing unit i,
the prediction error is defined as

erri = |T̂i − τi|
τi

, (24)

where T̂i is the predicted failure time of unit i, and τi is the
actual failure time of unit i. The procedure is repeated 50 times
and the result is shown in Figure 9. The x-axis represents dif-
ferent proportions of available measurements; e.g., “0.4” means
that the available signals for each testing unit i are truncated at
time 0.4τi. The curves are the average prediction errors where
for “True HI,” the true HI and the true degradation path model
are used for prognosis, whereas for “Constructed HI,” the mis-
specified degradation path model is used and the fusion coeffi-
cient is derived as Case II with unknown prior parameters. It is
interesting to see that the prognostic performance of the con-
structed HI is very close to the true HI when the proportion
of available measurements is moderate or large. One possible
reason for this observed behavior is that although the degrada-
tion path model is mis-specified, our proposed method is able
to derive a biased fusion coefficient such that the constructed
HI best fits the mis-specified degradation path model. Since
all measurements of historical units are utilized in parameter
estimation, the constructed HI will provide a better fit when a
moderate or large proportion of measurements have been col-
lected. This study shows that the proposed method could be
very useful as the true degradation model is usually unknown
and the estimated degradation model may be mis-specified in
practice.

5. Application

A case study is also conducted to evaluate the proposed method
in situations where the basic truth such as the true fusion func-
tion and the true general path model are unknown and the
assumptions of the proposed methodmay be violated. This rep-
resents a typical practical situation when implementing the pro-
posed method in real applications. In this case study, we focus
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Table . Detailed description of the  sensors (Saxena et al., ).

Symbol Description Units

T Total temperature at fan inlet °R
T Total temperature at LPC outlet °R
T Total temperature at HPC outlet °R
T Total temperature at LPT outlet °R
P Pressure at fan inlet psia
P Total pressure in bypass duct psia
P Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P/P) —
Ps Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass ratio —
farB Burner fuel–air ratio —
htBleed Bleed enthalpy —
Nf_dmd Demanded fan speed rpm
PCNfR_dmd Demanded corrected fan speed rpm
W HPT coolant bleed lbm/s
W LPT coolant bleed lbm/s

onmodeling and predicting the degradation of aircraft turbofan
engines.

5.1. Dataset description

The dataset was generated by C-MAPSS, which is a widely used
simulator for studying the degradation process of large commer-
cial turbofan engines (Saxena et al., 2008; Sarkar et al., 2011). In
particular, our dataset consists of 21 sensor signals of turbofan
engines under a single failure mode and a single environmental
condition. The signals are collected simultaneously and continu-
ously at time t = 1, 2, . . . , ni, and contain detailed information
such as the temperature and pressure of each engine i. A detailed
description of these sensors is given in Table 1. There are 100
historical units (i.e., m = 100) with a total of 20 631 observa-
tions (i.e.,

∑m
i=1 ni = 20 631) and 100 in-field units with 13 096

observations. For the historical units, the dataset contains all of
themeasurements from run to failure, whereas for in-field units,
measurements are only available up to a time point before fail-
ure and the goal is to predict the RULs of these in-field units
based on the available measurements. The true RULs are pro-
vided in a separated file; in this way, we are able to evaluate the
performance of our proposed method by comparing the pre-
dicted RULs with the true ones. The dataset is available online
(Saxena and Goebel, 2008).

5.2. Results and comparison

To the best of our knowledge, among the HI-based approaches,
Liu et al. (2017) studied the same dataset and achieved one of the
best currently existing prognostic results. Specifically, Liu et al.
(2017) proposed a metric SNRd (signal-to-noise ratio) for mea-
suring the quality of the degradation signals. Then they formu-
lated the problem in two steps as described in Section 2.2, where
in the first step, they combined the multiple sensor signals in
such a way that the “quality” of the constructed HI was maxi-
mized and then, in the second step, the RUL predictions were
conducted based on the constructed HI. They also showed that
their method outperformed the prognostic result based on any

single original sensor signal. Therefore, in this study, we choose
to compare the proposed method with the SNR-based method.
We follow the same data preprocessing procedures for sensor
selection and data transformation and use the same general path
model as in Liu et al. (2017) to provide a basis for a fair com-
parison. Specifically, we select 11 sensors out of the 21 sensors
based on the criterion that the sensor signals should consistently
exhibit an increasing or decreasing trend in all historical units.
In other words, a sensor is selected if its lastmeasurement is con-
sistently larger (increasing trend) or smaller (decreasing trend)
than the first measurement in all historical units. As a result,
the selected sensors are T24, T50, P30, Nf, Ps30, phi, NRf, BPR,
htBleed, W31, andW32. Then these sensors are transformed by
a logarithm operation and then standardized in the same way as
in Liu et al. (2017). Likewise, the quadratic general path model
(i.e., ψ(t ) = [1, t, t2]) is adopted here to describe the underly-
ing degradation process, as it provides a good fit according to
Liu et al. (2017).

After preprocessing of the dataset, we implement the iterative
procedure for Case II with the failure threshold arbitrarily set
to a value of two. In addition, we relax the constraints in Equa-
tion (19) to test the flexibility of our method and ensure that
the search space W�(k+1) is not empty. Specifically, the original
constraint ψ̇(t )μi(X i,w

(k); �̂(w(k))) ≥ C2 requires the degra-
dation path to be strictly increasing, which is equivalent to
that the second and third entries ofμi(X i,w

(k); �̂(w(k))) being
strictly positive, as ψ(t ) = [1, t, t2]. Instead, we relax this con-
straint and only require the third entry to be strictly positive
in this case study, i.e.,

..

ψ(t )μi(X i,w
(k); �̂(w(k))) ≥ C2, where

..

ψ(t ) = ∂2ψ(t )/∂t2. In other words, we allow the degradation
path represented by the HI to be stable at the beginning of
the lifecycle of the unit, due to the influence of the measure-
ment errors. The estimated weight fusion coefficient is shown in
Table 2.

First, we visually compare the 11 sensor signals with the HI
constructed by our proposed method in Figure 10. The dots
denote signalmeasurements and the curve denotes the degrada-
tion process fitted by the quadratic model. As this figure shows,
the constructed HI provides a clearer degradation trajectory
than any other sensor signal.

Figure 11 compares the prognostic results of the in-field
units using our proposed method with the SNR-based method
(HI-SNR) proposed by Liu et al. (2017), where the x-axis rep-
resents different levels of actual RUL. For example, “80” means
that only in-field units with an actual RUL less or equal to 80
are considered, and “all” means that all in-field units are consid-
ered. The curves refer to the average of the prediction errors as
defined in Equation (24), with the error bars being equal to one
standard deviation of the average predictor error. The curves
are not strictly aligned to the labels of the x-axis to facilitate
visualization. According to Figure 11, our proposed method
consistently creates lower average prediction errors with a lower

Table . Estimated fusion coefficient ŵ for the selected sensors.

Sensor

T T P Nf Ps phi NRf BPR htBleed W W

Coef. . . −. −. . −. −. . . −. −.
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Figure . Comparison of the  sensor signals and the HI constructed by the proposedmethod for a historical unit. The dots denote measurements and the curve denotes
the degradation process fitted using a quadratic model.

Figure . Comparison of the RUL prediction errors of the in-field units using the
SNR-based method and our proposed method.

variation at different levels of actual RUL compared with the
SNR-based method.

6. Conclusion

To prevent unexpected failures of critical units, sensors are
widely used to continuously monitor the underlying degrada-
tion process and infer the health status of these units in real
time. Although the statistical modeling of a single degradation
signal has been extensively studied in the literature, the infor-
mation contained in a single sensor signal may not be sufficient
to characterize the underlying degradation process and produce
an accurate RUL prediction, especially for complex systems. As
a result, multiple sensors are often used in practice to simultane-
ously monitor a unit and thus there is a pressing need to develop
an effective data fusion method tailored for degradation model-
ing and prognostics of multiple sensor signals. In this article, we
aim to address this issue by proposing a novel HI-basedmethod.

The critical challenges in constructing the HI mainly lie in
that the underlying degradation process is unobservable, and
the constructed HI must satisfy the engineering knowledge

extracted from the underlying degradation process. We call this
kind of problem indirect supervised learning. In this article,
we assumed that a number of historical units with known fail-
ure time have been acquired and then proposed the minimiza-
tion of the difference between the predicted failure time and the
true failure time based on the historical units. Particularly, our
innovative idea is to formulate the construction of HI using
the quantile regression technique and then realize the extracted
engineering knowledge from the underlying degradation pro-
cess, such as monotonicity and failure threshold, by impos-
ing different constraints in the proposed method. Contrary to
existing studies that tackle the problem in two separate steps,
we solved the problem as an integrated procedure, which thus
ensures the prognostic performance of our constructed HI.

One of the major contributions of this study is that the pro-
posed method ensures the convergence of the estimated fusion
coefficient ŵ to its true value. To the best of our knowledge, this
is the first article that provides such a theoretical analysis, which
is expected to stimulate follow-up studies. A number of sim-
ulation studies were conducted to evaluate the sensitivity and
prognostic performance of the proposedmethodunder different
scenarios. In addition, the proposed method was further tested
by a case study that involved the degradation of aircraft turbo-
fan engines when the underlying truth is unknown. The results
showed that the performance of the proposedmethod was satis-
factory in both the simulation and case studies and also superior
to the related existing benchmark method.

There are several topics worthy of further study. First, the
asymptotic properties of the proposed method are based on the
assumption of a general path model for the degradation pro-
cess. More studies should be conducted when other degrada-
tionmodels, such asWiener process or gammaprocess, are used.
Second, when multiple sensors are used for condition monitor-
ing, they may exhibit complex relations and some sensor sig-
nals may not be related to the underlying degradation process.
How to automatically screen out non-informative sensor signals
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and extend the linear fusion function (such as via kernel meth-
ods) would be an interesting problem for investigation. Third,
this study focuses on degradation modeling under a single fail-
ure mode and a single operation condition, whereas in prac-
tice, the situationmay bemore complex. Therefore, more efforts
are needed to consider multiple failure modes and also different
operation conditions.
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Appendix

Proof of Proposition 1

Since E[�̂i(w0)] = μ0, obviously μ̂(w0) converges to μ0
according to the law of large numbers. Conditioned on �i, it is
well known that the expectation

E

⎡
⎢⎣

(
Liw0 −�i�̂i (w0)

)T (
Liw0 −�i�̂i (w0)

)
ni − p

∣∣∣∣�i

⎤
⎥⎦ = σ 2

0 ,

which is a constant, and thus the unconditioned expectation is
also σ 2

0 . Thus, σ̂ 2(w0) converges to σ 2
0 . From now on, we treat

X i,1 = �T
i �i as random. Since

Var[�̂i(w0)|X i,1] = �0 + σ 2
0 (�T

i �i)
−1,

we get

Var[�̂i(w0)] = �0 + E
[
σ 2
0 (�T

i �i)
−1

]
+Var[E(�̂i(w0)|X i,1)].

Since E(�̂i(w0)|X i,1) = μ0, which means Var[E(�̂i(w0)|
X i,1)] = 0, we get

�0 = Var[�̂i(w0)] − E
[
σ 2
0
(
�T

i �i
)−1]

.

As a result,

1
m − 1

m∑
i=1

(�̂i(w0) − μ̂(w0))(�̂i(w0) − μ̂(w0))
T

→ Var[�̂i(w0)]

and

1
m

m∑
i=1

1
ni − p

(Liw0 −�i�̂i(w0))
T (Liw0 −�i�̂i(w0))

× (
�T

i �i
)−1 → E

[
σ 2
0
(
�T

i �i
)−1

]
,

and thus �̂(w0) → �0. This completes the proof. �
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